[ad_1]
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71:209–49.
Rugge M, Meggio A, Pravadelli C, Barbareschi M, Fassan M, Gentilini M, Zorzi M, Pretis G, Graham DY, Genta RM. Gastritis staging within the endoscopic follow-up for the secondary prevention of gastric most cancers: a 5-year potential research of 1755 sufferers. Intestine. 2019;68:11–7.
Shah MA, Bodoky G, Starodub A, Cunningham D, Yip D, Wainberg ZA, Bendell J, Thai D, He J, Bhargava P, et al. Part III research to judge efficacy and security of andecaliximab with mFOLFOX6 as first-line therapy in sufferers with superior gastric or GEJ adenocarcinoma (GAMMA-1). J Clin Oncol. 2021;39:990–1000.
Constantinidou A, Alifieris C, Trafalis DT. Concentrating on programmed cell dying – 1 (PD-1) and Ligand (PD-L1): a brand new period in most cancers lively immunotherapy. Pharmacol Ther. 2019;194:84–106.
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T cell genetic engineering methods to beat hurdles in stable tumors therapy. Entrance Immunol. 2022;13:830292.
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca Ok, Adam V. Hypoxia-inducible components: grasp regulators of hypoxic Tumor immune Escape. J Hematol Oncol. 2022;15:77.
Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren D, Hua Y, Yu B, Zhou Y, et al. Mechanisms of vasculogenic mimicry in hypoxic Tumor microenvironments. Mol Most cancers. 2021;20:7.
Haanen J. Changing chilly into sizzling tumors by combining immunotherapies. Cell. 2017;170:1055–56.
van Duijn A, Willemsen KJ, van Uden NOP, Hoyng L, Erades S, Koster J, Luiten RM, Bakker WJ. A secondary function for hypoxia and HIF1 within the regulation of (IFNγ-induced) PD-L1 expression in Melanoma. Most cancers Immunol Immunother. 2022;71:529–40.
Bailey CM, Liu Y, Liu M, Du X, Devenport M, Zheng P, Liu Y, Wang Y. Concentrating on HIF-1α abrogates PD-L1-mediated immune evasion in Tumor microenvironment however promotes tolerance in regular tissues. J Clin Make investments. 2022;132.
Smith V, Mukherjee D, Lunj S, Choudhury A, Hoskin P, West C, Illidge T. The impact of hypoxia on PD-L1 expression in Bladder most cancers. BMC Most cancers. 2021;21:1271.
Ding XC, Wang LL, Zhang XD, Xu JL, Li PF, Liang H, Zhang XB, Xie L, Zhou ZH, Yang J, et al. The connection between expression of PD-L1 and HIF-1α in glioma cells below hypoxia. J Hematol Oncol. 2021;14:92.
Solar Y, Tan J, Miao Y, Zhang Q. The function of PD-L1 within the immune dysfunction that mediates hypoxia-induced a number of organ harm. Cell Commun Sign. 2021;19:76.
Hugo W, Zaretsky JM, Solar L, Track C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, et al. Genomic and transcriptomic options of response to Anti-PD-1 remedy in metastatic Melanoma. Cell. 2016;165:35–44.
Zandberg DP, Menk AV, Velez M, Normolle D, DePeaux Ok, Liu A, Ferris RL, Delgoffe GM. Tumor hypoxia is related to resistance to PD-1 blockade in squamous cell carcinoma of the top and neck. J Immunother Most cancers. 2021;9(5):e002088.
Chida Ok, Kawazoe A, Suzuki T, Kawazu M, Ueno T, Takenouchi Ok, Nakamura Y, Kuboki Y, Kotani D, Kojima T, et al. Transcriptomic profiling of MSI-H/dMMR gastrointestinal tumors to determine determinants of responsiveness to anti-PD-1 remedy. Clin Most cancers Res. 2022;28:2110–17.
Teng W, Zhao L, Yang S, Zhang C, Liu M, Luo J, Jin J, Zhang M, Bao C, Li D, et al. The hepatic-targeted, resveratrol loaded nanoparticles for aid of excessive fats diet-induced nonalcoholic fatty Liver Illness. J Management Launch. 2019;307:139–49.
Wang Y, Yu J, Luo Z, Shi Q, Liu G, Wu F, Wang Z, Huang Y, Zhou D. Engineering endogenous tumor-associated macrophage-targeted biomimetic nano-RBC to reprogram Tumor immunosuppressive microenvironment for enhanced chemo-immunotherapy. Adv Mater. 2021;33:e2103497.
Zhang YX, Zhao YY, Shen J, Solar X, Liu Y, Liu H, Wang Y, Wang J. Nanoenabled modulation of acidic Tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 remedy. Nano Lett. 2019;19:2774–83.
Chen Q, Chen J, Yang Z, Xu J, Xu L, Liang C, Han X, Liu Z. Nanoparticle-enhanced radiotherapy to set off strong most cancers immunotherapy. Adv Mater. 2019;31:e1802228.
Track M, Liu T, Shi C, Zhang X, Chen X. Bioconjugated manganese dioxide nanoparticles improve chemotherapy response by priming tumor-associated macrophages towards M1-like phenotype and attenuating Tumor hypoxia. ACS Nano. 2016;10:633–47.
Ashton TM, Fokas E, Kunz-Schughart LA, Folkes LK, Anbalagan S, Huether M, Kelly CJ, Pirovano G, Buffa FM, Hammond EM, et al. The anti-malarial atovaquone will increase radiosensitivity by assuaging tumour hypoxia. Nat Commun. 2016;7:12308.
Liapis V, Labrinidis A, Zinonos I, Hay S, Ponomarev V, Panagopoulos V, DeNichilo M, Ingman W, Atkins GJ, Findlay DM, et al. Hypoxia-activated pro-drug TH-302 displays potent Tumor suppressive exercise and cooperates with chemotherapy in opposition to osteosarcoma. Most cancers Lett. 2015;357:160–69.
Portwood S, Lal D, Hsu YC, Vargas R, Johnson MK, Wetzler M, Hart CP, Wang ES. Exercise of the hypoxia-activated prodrug, TH-302, in preclinical human acute Myeloid Leukemia fashions. Clin Most cancers Res. 2013;19:6506–19.
Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T, Sheng J, Ager C, Nicholas C, Jaiswal AR, Solar Y, et al. Focused hypoxia discount restores T cell infiltration and sensitizes Prostate most cancers to immunotherapy. J Clin Make investments. 2018;128:5137–49.
Ma P, Chen J, Qu H, Li Y, Li X, Tang X, Track Z, Xin H, Zhang J, Nai J, et al. Hypoxic concentrating on and activating TH-302 loaded transcatheter arterial embolization microsphere. Drug Deliv. 2020;27:1412–24.
Lee AT, Pollack SM, Huang P, Jones RL. Part III comfortable tissue sarcoma trials: success or failure? Curr Deal with Choices Oncol. 2017;18:19.
Cutsem EV, Lenz H-J, Furuse J, Tabernero J, Heinemann V, Ioka T, Bazin I, Ueno M, Csõszi T, Wasan H, et al. MAESTRO: a randomized, double-blind part III research of evofosfamide (Evo) together with gemcitabine (gem) in beforehand untreated sufferers (pts) with metastatic or regionally superior unresectable pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol. 2016;34:4007–07.
Hu S, Zhang Y. Endostar-loaded PEG-PLGA nanoparticles: in vitro and in vivo analysis. Int J Nanomedicine. 2010;5:1039–48.
Nasrullah MZ. Caffeic acid phenethyl ester loaded PEG-PLGA nanoparticles improve wound therapeutic in diabetic rats. Antioxid (Basel). 2022;12.
Rafiei P, Haddadi A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous software: pharmacokinetics and biodistribution profile. Int J Nanomedicine. 2017;12:935–47.
Mai Z, Zhong J, Zhang J, Chen G, Tang Y, Ma W, Li G, Feng Z, Li F, Liang XJ et al. Service-free immunotherapeutic nano-booster with twin synergistic results based mostly on glutaminase inhibition mixed with photodynamic remedy. ACS Nano. 2023.
Rennick JJ, Johnston APR, Parton RG. Key rules and strategies for finding out the endocytosis of organic and nanoparticle therapeutics. Nat Nanotechnol. 2021;16:266–76.
Hua L, Wang Z, Zhao L, Mao H, Wang G, Zhang Ok, Liu X, Wu D, Zheng Y, Lu J, et al. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics. 2018;8:5088–105.
Galluzzo M, Pennacchietti S, Rosano S, Comoglio PM, Michieli P. Prevention of hypoxia by myoglobin expression in human Tumor cells promotes differentiation and inhibits Metastasis. J Clin Make investments. 2009;119:865–75.
Huff WX, Kwon JH, Henriquez M, Fetcko Ok, Dey M. The evolving function of CD8(+)CD28(-) immunosenescent T cells in most cancers immunology. Int J Mol Sci. 2019;20.
Huang W, Jiang Y, Xiong W, Solar Z, Chen C, Yuan Q, Zhou Ok, Han Z, Feng H, Chen H, et al. Noninvasive imaging of the Tumor immune microenvironment correlates with response to immunotherapy in gastric most cancers. Nat Commun. 2022;13:5095.
Huang Y, Tian Y, Zhao Y, Xue C, Zhan J, Liu L, He X, Zhang L. Efficacy of the hypoxia-activated prodrug evofosfamide (TH-302) in nasopharyngeal carcinoma in vitro and in vivo. Most cancers Commun (Lond). 2018;38:15.
Li Y, Zhao L, Li XF. The hypoxia-activated prodrug TH-302: exploiting hypoxia in most cancers remedy. Entrance Pharmacol. 2021;12:636892.
Van Cutsem E, Lenz H-J, Furuse J, Tabernero J, Heinemann V, Ioka T, Bazin I, Ueno M, Csõszi T, Wasan H, et al. A randomized, double-blind part III research of evofosfamide (Evo) together with gemcitabine (gem) in beforehand untreated sufferers (pts) with metastatic or regionally superior unresectable pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol. 2016;MAESTRO:34:4007–07.
Gaonkar RH, Ganguly S, Dewanjee S, Sinha S, Gupta A, Ganguly S, Chattopadhyay D, Chatterjee Debnath M. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo research. Sci Rep. 2017;7:530.
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a technique for bettering nanoparticle-based drug and gene supply. Adv Drug Deliv Rev. 2016;99:28–51.
Liu P, Yu H, Solar Y, Zhu M, Duan Y. A mPEG-PLGA-b-PLL copolymer service for adriamycin and siRNA supply. Biomaterials. 2012;33:4403–12.
Wang H, Zhao Y, Wu Y, Hu YL, Nan Ok, Nie G, Chen H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32:8281–90.
Acharya S, Sahoo SK. PLGA nanoparticles containing varied anticancer brokers and tumour supply by EPR impact. Adv Drug Deliv Rev. 2011;63:170–83.
Kang H, Rho S, Stiles WR, Hu S, Baek Y, Hwang DW, Kashiwagi S, Kim MS, Choi HS. Dimension-dependent EPR impact of polymeric nanoparticles on Tumor concentrating on. Adv Healthc Mater. 2020;9:e1901223.
Pastore C. Dimension-dependent nano-bio interactions. Nat Nanotechnol. 2021;16:1052.
Zhang Y, Zhu J, Zhang Z, He D, Zhu J, Chen Y, Zhang Y. Reworking of Tumor microenvironment for enhanced Tumor chemodynamic/photothermal/chemo-therapy. J Nanobiotechnol. 2022;20:388.
Chen C, Guo Q, Fu H, Yu J, Wang L, Solar Y, Zhang J, Duan Y. Asynchronous blockade of PD-L1 and CD155 by polymeric nanoparticles inhibits triple-negative Breast most cancers development and Metastasis. Biomaterials. 2021;275:120988.
Zhong Y, Meng F, Deng C, Zhong Z. Ligand-directed lively tumor-targeting polymeric nanoparticles for most cancers chemotherapy. Biomacromolecules. 2014;15:1955–69.
Zhang Z, Qian H, Huang J, Sha H, Zhang H, Yu L, Liu B, Hua D, Qian X. Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to boost concentrating on and antitumor capability in Colorectal most cancers therapy. Int J Nanomedicine. 2018;13:4961–75.
[ad_2]