[ad_1]
Weis, R. & Gaylord, T. Lithium niobate: abstract of bodily properties and crystal construction. Appl. Phys. A 37, 191–203 (1985).
Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photonics 6, 440–449 (2012).
Ghimire, S. & Reis, D. A. Excessive-harmonic technology from solids. Nat. Physics 15, 10–16 (2019).
Buryak, A. V., Di Trapani, P., Skryabin, D. V. & Trillo, S. Optical solitons as a result of quadratic nonlinearities: from primary physics to futuristic purposes. Phys. Rep. 370, 63–235 (2002).
O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum applied sciences. Nat. Photonics 3, 687–695 (2009).
Wehner, S., Elkouss, D. & Hanson, R. Quantum web: a imaginative and prescient for the street forward. Science 362, 9288 (2018).
He, G. S. Optical part conjugation: rules, methods, and purposes. Prog. Quantum Electron. 26, 131–191 (2002).
Cerullo, G. & De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1–18 (2003).
Langrock, C., Kumar, S., McGeehan, J. E., Willner, A. & Fejer, M. All-optical sign processing utilizing/spl chi//sup (2)/nonlinearities in guided-wave units. J. Gentle. Technol. 24, 2579–2592 (2006).
Wooten, E. L. et al. A assessment of lithium niobate modulators for fiber-optic communications techniques. IEEE J. Sel. High. Quantum Electron. 6, 69–82 (2000).
Elshaari, A. W., Pernice, W., Srinivasan, Okay., Benson, O. & Zwiller, V. Hybrid built-in quantum photonic circuits. Nat. Photonics 14, 285–298 (2020).
Zhu, D. et al. Built-in photonics on thin-film lithium niobate. Adv. Decide. Photonics 13, 242–352 (2021).
Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
Wang, C. et al. Built-in lithium niobate electro-optic modulators working at cmos-compatible voltages. Nature 562, 101–104 (2018).
Xu, M. et al. Excessive-performance coherent optical modulators primarily based on thin-film lithium niobate platform. Nat. Commun. 11, 3911 (2020).
Li, M. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).
Zhang, M. et al. Broadband electro-optic frequency comb technology in a lithium niobate microring resonator. Nature 568, 373–377 (2019).
Shah, M., Briggs, I., Chen, P.-Okay., Hou, S. & Fan, L. Seen-telecom tunable dual-band optical isolator primarily based on dynamic modulation in thin-film lithium niobate. Decide. Lett. 48, 1978–1981 (2023).
Xu, Y. et al. Bidirectional interconversion of microwave and lightweight with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).
Umeki, T., Tadanaga, O. & Asobe, M. Extremely environment friendly wavelength converter utilizing direct-bonded ppznln ridge waveguide. IEEE J. Quantum Electron. 46, 1206–1213 (2010).
Kashiwazaki, T. et al. Steady-wave 6-db-squeezed mild with 2.5-tHz-bandwidth from single-mode ppln waveguide. APL Photonics 5, 036104 (2020).
Parameswaran, Okay. R. et al. Extremely environment friendly second-harmonic technology in buried waveguides fashioned by annealed and reverse proton change in periodically poled lithium niobate. Decide. Lett. 27, 179–181 (2002).
Parameswaran, Okay. R., Kurz, J. R., Roussev, R. V. & Fejer, M. M. Remark of 99% pump depletion in single-pass second-harmonic technology in a periodically poled lithium niobate waveguide. Decide. Lett. 27, 43–45 (2002).
Suntsov, S., Rüter, C. E., Brüske, D. & Kip, D. Watt-level 775 nm SHG with 70% conversion effectivity and 97% pump depletion in annealed/reverse proton exchanged diced PPLN ridge waveguides. Decide. Expr. 29, 11386–11393 (2021).
Cho, C.-Y. et al. Energy scaling of continuous-wave second harmonic technology in a mgo: Ppln ridge waveguide and the applying to a compact wavelength conversion module. Decide. Lett. 46, 2852–2855 (2021).
Berry, S. A., Carpenter, L. G., Grey, A. C., Smith, P. G. & Gawith, C. B. Zn-indiffused diced ridge waveguides in MGO: PPLN producing 1 watt 780 nm SHG at 70% effectivity. OSA Contin. 2, 3456–3464 (2019).
Carpenter, L. G. et al. Cw demonstration of shg spectral narrowing in a ppln waveguide producing 2.5 w at 780 nm. Decide. Categorical 28, 21382–21390 (2020).
Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).
Rao, A. et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion effectivity of 4,600percentW−1 cm−2. Decide. Categorical 27, 25920–25930 (2019).
Zhao, J. et al. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic technology. Decide. Categorical 28, 19669–19682 (2020).
Chen, P.-Okay., Briggs, I., Hou, S. & Fan, L. Extremely-broadband quadrature squeezing with thin-film lithium niobate nanophotonics. Decide. Lett. 47, 1506–1509 (2022).
Chang, L. et al. Skinny movie wavelength converters for photonic built-in circuits. Optica 3, 531–535 (2016).
Boes, A. et al. Improved second harmonic efficiency in periodically poled lnoi waveguides by engineering of lateral leakage. Decide. Categorical 27, 23919–23928 (2019).
Zhang, H., Li, Q., Zhu, H., Cai, L. & Hu, H. Second harmonic technology by quasi-phase matching in a lithium niobate skinny movie. Decide. Mater. Categorical 12, 2252–2259 (2022).
Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic technology effectivity of 250,000%/W. Optica 6, 1455–1460 (2019).
Bruel, M. Silicon on insulator materials know-how. Electron. Lett. 31, 1201–12021 (1995).
Shoji, I., Kondo, T., Kitamoto, A., Shirane, M. & Ito, R. Absolute scale of second-order nonlinear-optical coefficients. JOSA B. 14, 2268–2294 (1997).
Helmfrid, S., Arvidsson, G. & Webjörn, J. Affect of assorted imperfections on the conversion effectivity of second-harmonic technology in quasi-phase-matching lithium niobate waveguides. JOSA B. 10, 222–229 (1993).
Cui, C., Zhang, L. & Fan, L. In situ management of efficient Kerr nonlinearity with pockels built-in photonics. Nat. Phys. 18, 497–501 (2022).
Cui, C., Zhang, L. & Fan, L. Management spontaneous symmetry breaking of photonic chirality with reconfigurable anomalous nonlinearity. Preprint at arXiv https://arxiv.org/abs/2208.04866 (2022).
[ad_2]