Home Nanotechnology Tailored poling to interrupt the nonlinear effectivity restrict in nanophotonic lithium niobate waveguides

Tailored poling to interrupt the nonlinear effectivity restrict in nanophotonic lithium niobate waveguides

0
Tailored poling to interrupt the nonlinear effectivity restrict in nanophotonic lithium niobate waveguides

[ad_1]

  • Weis, R. & Gaylord, T. Lithium niobate: abstract of bodily properties and crystal construction. Appl. Phys. A 37, 191–203 (1985).

    Article 

    Google Scholar
     

  • Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photonics 6, 440–449 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ghimire, S. & Reis, D. A. Excessive-harmonic technology from solids. Nat. Physics 15, 10–16 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Buryak, A. V., Di Trapani, P., Skryabin, D. V. & Trillo, S. Optical solitons as a result of quadratic nonlinearities: from primary physics to futuristic purposes. Phys. Rep. 370, 63–235 (2002).

    Article 
    CAS 

    Google Scholar
     

  • O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum applied sciences. Nat. Photonics 3, 687–695 (2009).

    Article 

    Google Scholar
     

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum web: a imaginative and prescient for the street forward. Science 362, 9288 (2018).

    Article 

    Google Scholar
     

  • He, G. S. Optical part conjugation: rules, methods, and purposes. Prog. Quantum Electron. 26, 131–191 (2002).

    Article 

    Google Scholar
     

  • Cerullo, G. & De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1–18 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Langrock, C., Kumar, S., McGeehan, J. E., Willner, A. & Fejer, M. All-optical sign processing utilizing/spl chi//sup (2)/nonlinearities in guided-wave units. J. Gentle. Technol. 24, 2579–2592 (2006).

    Article 

    Google Scholar
     

  • Wooten, E. L. et al. A assessment of lithium niobate modulators for fiber-optic communications techniques. IEEE J. Sel. High. Quantum Electron. 6, 69–82 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Elshaari, A. W., Pernice, W., Srinivasan, Okay., Benson, O. & Zwiller, V. Hybrid built-in quantum photonic circuits. Nat. Photonics 14, 285–298 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, D. et al. Built-in photonics on thin-film lithium niobate. Adv. Decide. Photonics 13, 242–352 (2021).

    Article 

    Google Scholar
     

  • Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Built-in lithium niobate electro-optic modulators working at cmos-compatible voltages. Nature 562, 101–104 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, M. et al. Excessive-performance coherent optical modulators primarily based on thin-film lithium niobate platform. Nat. Commun. 11, 3911 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, M. et al. Broadband electro-optic frequency comb technology in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shah, M., Briggs, I., Chen, P.-Okay., Hou, S. & Fan, L. Seen-telecom tunable dual-band optical isolator primarily based on dynamic modulation in thin-film lithium niobate. Decide. Lett. 48, 1978–1981 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Bidirectional interconversion of microwave and lightweight with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Umeki, T., Tadanaga, O. & Asobe, M. Extremely environment friendly wavelength converter utilizing direct-bonded ppznln ridge waveguide. IEEE J. Quantum Electron. 46, 1206–1213 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kashiwazaki, T. et al. Steady-wave 6-db-squeezed mild with 2.5-tHz-bandwidth from single-mode ppln waveguide. APL Photonics 5, 036104 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Parameswaran, Okay. R. et al. Extremely environment friendly second-harmonic technology in buried waveguides fashioned by annealed and reverse proton change in periodically poled lithium niobate. Decide. Lett. 27, 179–181 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Parameswaran, Okay. R., Kurz, J. R., Roussev, R. V. & Fejer, M. M. Remark of 99% pump depletion in single-pass second-harmonic technology in a periodically poled lithium niobate waveguide. Decide. Lett. 27, 43–45 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Suntsov, S., Rüter, C. E., Brüske, D. & Kip, D. Watt-level 775 nm SHG with 70% conversion effectivity and 97% pump depletion in annealed/reverse proton exchanged diced PPLN ridge waveguides. Decide. Expr. 29, 11386–11393 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cho, C.-Y. et al. Energy scaling of continuous-wave second harmonic technology in a mgo: Ppln ridge waveguide and the applying to a compact wavelength conversion module. Decide. Lett. 46, 2852–2855 (2021).

    Article 

    Google Scholar
     

  • Berry, S. A., Carpenter, L. G., Grey, A. C., Smith, P. G. & Gawith, C. B. Zn-indiffused diced ridge waveguides in MGO: PPLN producing 1 watt 780 nm SHG at 70% effectivity. OSA Contin. 2, 3456–3464 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Carpenter, L. G. et al. Cw demonstration of shg spectral narrowing in a ppln waveguide producing 2.5 w at 780 nm. Decide. Categorical 28, 21382–21390 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rao, A. et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion effectivity of 4,600percentW−1 cm−2. Decide. Categorical 27, 25920–25930 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic technology. Decide. Categorical 28, 19669–19682 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P.-Okay., Briggs, I., Hou, S. & Fan, L. Extremely-broadband quadrature squeezing with thin-film lithium niobate nanophotonics. Decide. Lett. 47, 1506–1509 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chang, L. et al. Skinny movie wavelength converters for photonic built-in circuits. Optica 3, 531–535 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Boes, A. et al. Improved second harmonic efficiency in periodically poled lnoi waveguides by engineering of lateral leakage. Decide. Categorical 27, 23919–23928 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H., Li, Q., Zhu, H., Cai, L. & Hu, H. Second harmonic technology by quasi-phase matching in a lithium niobate skinny movie. Decide. Mater. Categorical 12, 2252–2259 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic technology effectivity of 250,000%/W. Optica 6, 1455–1460 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bruel, M. Silicon on insulator materials know-how. Electron. Lett. 31, 1201–12021 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Shoji, I., Kondo, T., Kitamoto, A., Shirane, M. & Ito, R. Absolute scale of second-order nonlinear-optical coefficients. JOSA B. 14, 2268–2294 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Helmfrid, S., Arvidsson, G. & Webjörn, J. Affect of assorted imperfections on the conversion effectivity of second-harmonic technology in quasi-phase-matching lithium niobate waveguides. JOSA B. 10, 222–229 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Cui, C., Zhang, L. & Fan, L. In situ management of efficient Kerr nonlinearity with pockels built-in photonics. Nat. Phys. 18, 497–501 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cui, C., Zhang, L. & Fan, L. Management spontaneous symmetry breaking of photonic chirality with reconfigurable anomalous nonlinearity. Preprint at arXiv https://arxiv.org/abs/2208.04866 (2022).

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here