Home Nanotechnology Spontaneous broken-symmetry insulator and metals in tetralayer rhombohedral graphene

Spontaneous broken-symmetry insulator and metals in tetralayer rhombohedral graphene

0
Spontaneous broken-symmetry insulator and metals in tetralayer rhombohedral graphene

[ad_1]

  • Min, H., Borghi, G., Polini, M. & MacDonald, A. H. Pseudospin magnetism in graphene. Phys. Rev. B 77, 041407 (2008).

    Article 

    Google Scholar
     

  • Zhang, F., Min, H., Polini, M. & MacDonald, A. H. Spontaneous inversion symmetry breaking in graphene bilayers. Phys. Rev. B 81, 041402 (2010).

    Article 

    Google Scholar
     

  • Nandkishore, R. & Levitov, L. Quantum anomalous Corridor state in bilayer graphene. Phys. Rev. B 82, 115124 (2010).

    Article 

    Google Scholar
     

  • Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Corridor states in chirally stacked few-layer graphene programs. Phys. Rev. Lett. 4, 156801 (2011).

  • Vafek, O. & Yang, Ok. Many-body instability of Coulomb interacting bilayer graphene: renormalization group method. Phys. Rev. B 81, 041401 (2010).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Landau-level splitting in graphene in excessive magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zondiner, U. et al. Cascade of section transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wong, D. et al. Cascade of digital transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Velasco, J. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).

    Article 

    Google Scholar
     

  • Lee, Y. et al. Competitors between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun. 5, 5656 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Myhro, Ok. et al. Giant tunable intrinsic hole in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater. 5, 045013 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Koshino, M. Interlayer screening impact in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 81, 125304 (2010).

    Article 

    Google Scholar
     

  • Aoki, M. & Amawashi, H. Dependence of band buildings on stacking and area in layered graphene. Stable State Commun. 142, 123–127 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, F., Sahu, B., Min, H. & MacDonald, A. H. Band construction of ABC-stacked graphene trilayers. Phys. Rev. B 82, 035409 (2010).

    Article 

    Google Scholar
     

  • Kerelsky, A. et al. Moiréless correlations in ABCA graphene. Proc. Natl Acad. Sci. USA 118, e2017366118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ju, L. et al. Topological valley transport at bilayer graphene area partitions. Nature 520, 650–655 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Proof of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons within the pure hyperbolic materials hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a pure hyperbolic materials. Nat. Commun. 6, 6963 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional supplies. Nano Lett. 18, 8011–8015 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Damaged-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Direct statement of a broadly tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Maher, P. et al. Proof for a spin section transition at cost neutrality in bilayer graphene. Nat. Phys. 9, 154–158 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jung, J. & MacDonald, A. H. Gapped damaged symmetry states in ABC-stacked trilayer graphene. Phys. Rev. B 88, 075408 (2013).

    Article 

    Google Scholar
     

  • Jung, J., Zhang, F. & MacDonald, A. H. Lattice idea of pseudospin ferromagnetism in bilayer graphene: competing interaction-induced quantum Corridor states. Phys. Rev. B 83, 115408 (2011).

    Article 

    Google Scholar
     

  • Xiao, D., Yao, W. & Niu, Q. Valley contrasting physics in graphene: magnetic second and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article 

    Google Scholar
     

  • Feldman, B. E. Damaged-symmetry states and divergent resistance in suspended bilayer graphene. Nat. Phys. 5, 889–893 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y. et al. Digital section separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Stoner, E. C. Collective electron ferromagnetism. Proc. R. Soc. Lond. A 165, 372–414 (1997).


    Google Scholar
     

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    CAS 

    Google Scholar
     

  • de la Barrera, S. C. et al. Cascade of isospin section transitions in Bernal-stacked bilayer graphene at zero magnetic area. Nat. Phys. 18, 771–775 (2022).

    Article 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, Ok. & Younger, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01520-1 (2023).

    Article 

    Google Scholar
     

  • Park, Y., Kim, Y., Chittari, B. L. & Jung, J. Topological flat bands in rhombohedral tetralayer and multilayer graphene on hexagonal boron nitride moiré superlattices. Phys. Rev. B 108, 155406 (2023).

    Article 

    Google Scholar
     

  • Szabo, A. & Ostlund, N. S. Trendy Quantum Chemistry: Introduction to Superior Digital Construction Concept 1st edn (Dover Publications, 1996).

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here