Home Nanotechnology A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower

A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower

0
A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower

[ad_1]

  • Kammerer, C. et al. Biomimetic and technomimetic single molecular machines. Chem. Lett. 48, 299–308 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Feringa, B. L. The artwork of constructing small: from molecular switches to molecular motors. J. Org. Chem. 72, 6635–6652 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Bathtub, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Synthetic molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).

    Article 
    CAS 

    Google Scholar
     

  • von Delius, M. & Leigh, D. A. Strolling molecules. Chem. Soc. Rev. 40, 3656–3676 (2011).

    Article 

    Google Scholar
     

  • Chakraborty, Okay., Veetil, A. T., Jaffrey, S. R. & Krishnan, Y. Nucleic acid-based nanodevices in organic imaging. Annu. Rev. Biochem. 85, 349–373 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cui, C. et al. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat. Nanotechnol. 16, 1394–1402 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stommer, P. et al. An artificial tubular molecular transport system. Nat. Commun. 12, 4393 (2021).

    Article 

    Google Scholar
     

  • Li, Y. et al. Leakless end-to-end transport of small molecules by micron-length DNA nanochannels. Sci. Adv. 8, eabq4834 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kamiya, Y. & Asanuma, H. Mild-driven DNA nanomachine with a photoresponsive molecular engine. Acc. Chem. Res. 47, 1663–1672 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Marras, A. E., Zhou, L., Su, H. J. & Castro, C. E. Programmable movement of DNA origami mechanisms. Proc. Natl Acad. Sci. USA 112, 713–718 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kudernac, T. et al. Electrically pushed directional movement of a four-wheeled molecule on a metallic floor. Nature 479, 208–211 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Mild-powered autonomous and directional molecular movement of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Erbas-Cakmak, S. et al. Rotary and linear molecular motors pushed by pulses of a chemical gas. Science 358, 340–343 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven synthetic molecular pump. Nature 594, 529–534 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pumm, A. Okay. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shi, X. et al. Sustained unidirectional rotation of a self-organized DNA rotor on a nanopore. Nat. Phys. 18, 1105 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Baroncini, M. et al. Making and working molecular machines: a multidisciplinary problem. ChemistryOpen 7, 169–179 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Valero, J., Pal, N., Dhakal, S., Walter, N. G. & Famulok, M. A bio-hybrid DNA rotor-stator nanoengine that strikes alongside predefined tracks. Nat. Nanotechnol. 13, 496–503 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Poppleton, E., Mallya, A., Dey, S., Joseph, J. & Sulc, P. Nanobase.org: a repository for DNA and RNA nanostructures. Nucleic Acids Res. 50, D246–D252 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L., Marras, A. E., Su, H. J. & Castro, C. E. DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano 8, 27–34 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Z., Castro, C. E. & Arya, G. Conformational dynamics of mechanically compliant DNA nanostructures from coarse-grained molecular dynamics simulations. ACS Nano 11, 4617–4630 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Los, G. V. et al. HaloTag: a novel protein labeling expertise for cell imaging and protein evaluation. ACS Chem. Biol. 3, 373–382 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Valero, J. & Famulok, M. Regeneration of burnt bridges on a DNA catenane walker. Angew. Chem. Int. Ed. Engl. 59, 16366–16370 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Z. et al. A self-regulating DNA rotaxane linear actuator pushed by chemical power. J. Am. Chem. Soc. 143, 13292–13298 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Scheres, S. H. RELION: implementation of a Bayesian strategy to cryo-EM construction dedication. J. Struct. Biol. 180, 519–530 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pereira, M. J. et al. Single VS ribozyme molecules reveal dynamic and hierarchical folding towards catalysis. J. Mol. Biol. 382, 496–509 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Sabanayagam, C. R., Eid, J. S. & Meller, A. Utilizing fluorescence resonance power switch to measure distances alongside particular person DNA molecules: corrections on account of nonideal switch. J. Chem. Phys. 122, 061103 (2005).

    Article 

    Google Scholar
     

  • Guajardo, R., Lopez, P., Dreyfus, M. & Sousa, R. NTP focus results on preliminary transcription by T7 RNAP point out that translocation happens by passive sliding and reveal that divergent promoters have distinct NTP focus necessities for productive initiation. J. Mol. Biol. 281, 777–792 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Koh, H. R. et al. Correlating transcription initiation and conformational adjustments by a single-subunit RNA Polymerase with close to base-pair decision. Mol. Cell 70, 695–706 e695 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tang, G. Q., Roy, R., Bandwar, R. P., Ha, T. & Patel, S. S. Actual-time commentary of the transition from transcription initiation to elongation of the RNA polymerase. Proc. Natl Acad. Sci. USA 106, 22175–22180 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. H. & Larson, R. G. Single-molecule evaluation of 1D diffusion and transcription elongation of T7 RNA polymerase alongside particular person stretched DNA molecules. Nucleic Acids Res. 35, 3848–3858 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Martin, C. T., Muller, D. Okay. & Coleman, J. E. Processivity in early levels of transcription by T7 RNA polymerase. Biochemistry 27, 3966–3974 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S., Nguyen, H. M. & Kang, C. Tiny abortive initiation transcripts exert antitermination exercise on an RNA hairpin-dependent intrinsic terminator. Nucleic Acids Res. 38, 6045–6053 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Henderson, Okay. L. et al. RNA polymerase: step-by-step kinetics and mechanism of transcription initiation. Biochemistry 58, 2339–2352 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Revyakin, A., Liu, C., Ebright, R. H. & Strick, T. R. Abortive initiation and productive initiation by RNA polymerase contain DNA scrunching. Science 314, 1139–1143 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Shen, H. & Kang, C. Two web site contact of elongating transcripts to phage T7 RNA polymerase at C-terminal areas. J. Biol. Chem. 276, 4080–4084 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Ouldridge, T. E., Louis, A. A. & Doye, J. P. Okay. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA mannequin. J. Chem. Phys. 134, 085101 (2011).

    Article 

    Google Scholar
     

  • Rovigatti, L., Sulc, P., Reguly, I. Z. & Romano, F. A comparability between parallelization approaches in molecular dynamics simulations on GPUs. J. Comput. Chem. 36, 1–8 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Snodin, B. E. et al. Introducing improved structural properties and salt dependence right into a coarse-grained mannequin of DNA. J. Chem. Phys. 142, 234901 (2015).

    Article 

    Google Scholar
     

  • Sulc, P. et al. Sequence-dependent thermodynamics of a coarse-grained DNA mannequin. J. Chem. Phys. https://doi.org/10.1063/1.4754132 (2012).

  • Thomen, P. et al. T7 RNA polymerase studied by pressure measurements various cofactor focus. Biophys. J. 95, 2423–2433 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Durniak, Okay. J., Bailey, S. & Steitz, T. A. The construction of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science 322, 553 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ramezani, H. & Dietz, H. Constructing machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, J., Eyster, T. W., Misra, A. C. & Lahann, J. Cardiomyocyte-driven actuation in biohybrid microcylinders. Adv. Mater. 27, 4509–4515 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sagara, Y. et al. Rotaxanes as mechanochromic fluorescent pressure transducers in polymers. J. Am. Chem. Soc. 140, 1584–1587 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. A synthetic molecular shuttle operates in lipid bilayers for ion transport. J. Am. Chem. Soc. 140, 17992–17998 (2018).

    Article 
    CAS 

    Google Scholar
     

  • DeLuca, M., Shi, Z., Castro, C. E. & Arya, G. Dynamic DNA nanotechnology: towards practical nanoscale gadgets. Nanoscale Horiz. 5, 182–201 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gerling, T., Wagenbauer, Okay. F., Neuner, A. M. & Dietz, H. Dynamic DNA gadgets and assemblies shaped by shape-complementary, non-base pairing 3D parts. Science 347, 1446–1452 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Skugor, M. et al. Orthogonally photocontrolled non-autonomous DNA walker. Angew. Chem. Int. Ed. Engl. 58, 6948–6951 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Mild-induced reversible reconfiguration of DNA-based constitutional dynamic networks: utility to switchable catalysis. Angew. Chem. Int. Ed. Engl. 57, 8105–8109 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Asanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiyama, M. Photoregulation of the formation and dissociation of a DNA duplex through the use of the cistrans isomerization of azobenzene. Angew. Chem. Int. Ed. Engl. 38, 2393–2395 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M., Asanuma, H. & Komiyama, M. Azobenzene-tethered T7 promoter for environment friendly photoregulation of transcription. J. Am. Chem. Soc. 128, 1009–1015 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Roy, R., Hohng, S. & Ha, T. A sensible information to single-molecule FRET. Nat. Strategies 5, 507–516 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Chandradoss, S. D. et al. Floor passivation for single-molecule protein research. J. Vis. Exp. https://doi.org/10.3791/50549 (2014).

    Article 

    Google Scholar
     

  • Ouldridge, T. E., Sulc, P., Romano, F., Doye, J. P. Okay. & Louis, A. A. DNA hybridization kinetics: zippering, inner displacement and sequence dependence. Nucleic Acids Res. 41, 8886–8895 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Snodin, B. E. Okay. et al. Direct simulation of the self-assembly of a small DNA origami. Acs Nano 10, 1724–1737 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Douglas, S. M. et al. Speedy prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Suma, A. et al. TacoxDNA: a user-friendly net server for simulations of advanced DNA buildings, from single strands to origami. J. Comput. Chem. 40, 2586–2595 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bohlin, J. et al. Design and simulation of DNA, RNA and hybrid protein–nucleic acid nanostructures with oxView. Nat. Protoc. 17, 1762–1788 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Poppleton, E. et al. Design, optimization and evaluation of huge DNA and RNA nanostructures by interactive visualization, enhancing and molecular simulation. Nucl. Acids Res. https://doi.org/10.1093/nar/gkaa417 (2020)

  • Doye, J. P. Okay. et al. The oxDNA coarse-grained mannequin as a software to simulate DNA origami. Strategies Mol. Biol. 2639, 93–112 (2023).

    Article 

    Google Scholar
     

  • Skinner, G. M., Kalafut, B. S. & Visscher, Okay. Downstream DNA pressure regulates the soundness of the T7 RNA polymerase initiation advanced. Biophys. J. 100, 1034–1041 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New instruments for automated cryo-EM single-particle evaluation in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Laptop visualization of three-dimensional picture knowledge utilizing IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Mindell, J. A. & Grigorieff, N. Correct dedication of native defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Vester, B. & Wengel, J. LNA (locked nucleic acid): high-affinity concentrating on of complementary RNA and DNA. Biochemistry 43, 13233–13241 (2004).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here