[ad_1]
Zignol M, Gemert Wv, Falzon D, Sismanidis C, Glaziou P, Floyd Okay, Raviglione M. Surveillance of anti-tuberculosis drug resistance on the earth: an up to date evaluation, 2007–2010. Bull World Well being Organ. 2012;90:111–9.
Migliori GB, Raviglione MC. Important tuberculosis. Cham: Springer; 2021.
Shukla R, Sethi A, Handa M, Mohan M, Tripathi PK, Kesharwani P. Dendrimer-based drug supply programs for tuberculosis therapy. In: Kesharwani Prashant, editor. Nanotechnology primarily based approaches for tuberculosis therapy. Amsterdam: Elsevier; 2020.
Group WH: International tuberculosis report 2013: World Well being Group; 2013.
WHO G: International tuberculosis report 2020. Glob Tuberc Rep 2020.
Tuberculosis. https://www.who.int/news-room/fact-sheets/element/tuberculosis
Extra MP, Chitalkar RV, Bhadane MS, Dhole SD, Patil AG, Patil PO, Deshmukh PK. Growth of graphene-drug nanoparticle primarily based supramolecular self assembled pH delicate hydrogel as potential provider for focusing on MDR tuberculosis. Mater Technol. 2019;34(6):324–35.
Sung N, Again S, Jung J, Kim Okay-H, Kim J-Okay, Lee JH, Ra Y, Yang HC, Lim C, Cho S. Inactivation of multidrug resistant (MDR)-and extensively drug resistant (XDR)-Mycobacterium tuberculosis by photodynamic remedy. Photodiagn Photodyn Ther. 2013;10(4):694–702.
Costa A, Pinheiro M, Magalhães J, Ribeiro R, Seabra V, Reis S, Sarmento B. The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev. 2016;102:102–15.
Vinod V, Pushkaran AC, Kumar A, Mohan CG, Biswas R. 2021 Interplay mechanism of Mycobacterium tuberculosis GroEL2 protein with macrophage Lectin-like, oxidized low-density lipoprotein receptor-1: an built-in computational and experimental research. Biochimica et Biophysica Acta Gen Subj. 1865;1:129758.
Krishnan N, Robertson BD, Thwaites G. The mechanisms and penalties of the extra-pulmonary dissemination of Mycobacterium tuberculosis. Tuberculosis. 2010;90(6):361–6.
Sia IG, Wieland ML. Present ideas within the administration of tuberculosis. In: Beckman Thomas J, editor. Mayo clinic proceedings. Amsterdam: Elsevier; 2011.
Vinod V, Vijayrajratnam S, Vasudevan AK, Biswas R. The cell floor adhesins of Mycobacterium tuberculosis. Microbiol Res. 2020;232:126392.
Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for world infectious ailments. Nat Nanotechnol. 2021;16(4):369–84.
Paulose RR, Kumar VA, Sharma A, Damle A, Saikumar D, Sudhakar A, Koshy AK, Venu RP. An outcome-based composite method for the analysis of intestinal tuberculosis: a pilot research from a tertiary care centre in South India. J Royal Coll Phys Edinb. 2021;51(4):344–50.
Saktiawati AM, Sturkenboom MG, Stienstra Y, Subronto YW, Kosterink JG, van der Werf TS, Alffenaar J-WC. Impression of meals on the pharmacokinetics of first-line anti-TB medication in treatment-naive TB sufferers: a randomized cross-over trial. J Antimicrob Chemother. 2016;71(3):703–10.
Prameswari A. The analysis of instantly noticed therapy short-course (DOTS) implementation for TB in hospital X. J Medicoeticolegal dan Manaj Rumah Sakit. 2018;7(2):93–101. https://doi.org/10.18196/jmmr.7261.
Pal S, Soni V, Kumar S, Jha SK, Medatwal N, Rana Okay, Yadav P, Mehta D, Jain D, Sharma P. A hydrogel-based implantable multidrug antitubercular formulation outperforms oral supply. Nanoscale. 2021;13(31):13225–30.
Connolly LE, Edelstein PH, Ramakrishnan L. Why is long-term remedy required to treatment tuberculosis? PLoS Med. 2007;4(3):e120. https://doi.org/10.1371/journal.pmed.0040120.
Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary views. FEMS Microbiol Rev. 2017;41(3):354–73.
Seung KJ, Keshavjee S, Wealthy ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Chilly Spring Harbor Perspect Med. 2015. https://doi.org/10.1101/cshperspect.a017863.
Hickey A, Durham P, Dharmadhikari A, Nardell E. Inhaled drug therapy for tuberculosis: previous progress and future prospects. J Management Launch. 2016;240:127–34. https://doi.org/10.1016/j.jconrel.2015.11.018.
Braunstein M, Hickey AJ, Ekins S. Why wait? The case for treating tuberculosis with inhaled medication. Pharm Res. 2019;36(12):1–6.
Group WH. Latent tuberculosis an infection: up to date and consolidated pointers for programmatic administration. Geneva: World Well being Group; 2018.
Brhane Y, Gabriel T, Adane T, Negash Y, Mulugeta H, Ayele M. Current developments and novel drug supply methods for the therapy of tuberculosis. Int J Pharm Sci Nanotechnol. 2019;12(3):4524–30.
Cohen J: Approval of novel TB drug celebrated—with restraint. In: American Affiliation for the Development of Science; 2013.
Liu Y, Matsumoto M, Ishida H, Ohguro Okay, Yoshitake M, Gupta R, Geiter L, Hafkin J. Delamanid: from discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis. 2018;111:20–30.
Keam SJ. Pretomanid: first approval. Medication. 2019;79(16):1797–803.
Kaur Okay, Gupta A, Narang R, Murthy R. Novel drug supply programs: desired feat for tuberculosis. J Adv Pharm Technol Res. 2010;1(2):145.
Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Current developments in drug supply for therapy of tuberculosis by focusing on macrophages. Adv Ther. 2022. https://doi.org/10.1002/adtp.202100193.
Borah Slater Okay, Kim D, Chand P, Xu Y, Shaikh H, Undale V. A present perspective on the potential of nanomedicine for anti-tuberculosis remedy. Trop Med Infect Dis. 2023;8(2):100.
Shirsath NR, Goswami AK. Nanocarriers primarily based novel drug supply as efficient drug supply: a evaluate. Curr Nanomater. 2019;4(2):71–83.
Dhanjal DS, Mehta M, Chopra C, Singh R, Sharma P, Chellappan DK, Tambuwala MM, Bakshi HA, Aljabali AA, Gupta G. Novel managed launch pulmonary drug supply programs: present updates and challenges. In: Azar Ahmad Taher, editor. Modeling and management of drug supply programs. Amsterdam: Elsevier; 2021.
Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections–a comparative evaluation of epidemiology, analysis and therapy. J Biomed Sci. 2020;27(1):1–17.
Suresh P, Kumar A, Biswas R, Vijayakumar D, Thulasidharan S, Anjaneyan G, Kunoor A, Biswas L. Epidemiology of nontuberculous mycobacterial an infection in tuberculosis suspects. Am J Trop Med Hyg. 2021. https://doi.org/10.4269/ajtmh.21-0095.
Singh C, Koduri L, Bhatt TD, Jhamb SS, Mishra V, Gill MS, Suresh S. In vitro-in vivo analysis of novel co-spray dried rifampicin phospholipid lipospheres for oral supply. AAPS PharmSciTech. 2017;18(1):138–46.
Denti P, Jeremiah Okay, Chigutsa E, Faurholt-Jepsen D, PrayGod G, Vary N, Castel S, Wiesner L, Hagen CM, Christiansen M. Pharmacokinetics of isoniazid, pyrazinamide, and ethambutol in newly identified pulmonary TB sufferers in Tanzania. PLoS ONE. 2015;10(10):e0141002.
Saifullah B, Chrzastek A, Maitra A, Naeemullah B, Fakurazi S, Bhakta S, Hussein MZ. Novel anti-tuberculosis nanodelivery formulation of ethambutol with graphene oxide. Molecules. 2017;22(10):1560.
Zhang M, Sala C, Hartkoorn RC, Dhar N, Mendoza-Losana A, Cole ST. Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery software for latent tuberculosis. Antimicrob Brokers Chemother. 2012;56(11):5782–9.
Pijck J, Hallynck T, Soep H, Baert L, Daneels R, Boelaert J. Pharmacokinetics of amikacin in sufferers with renal insufficiency: relation of half-life and creatinine clearance. J Infect Dis. 1976;134(Supplement_2):S331–41. https://doi.org/10.1093/infdis/135.Supplement_2.S331.
Bunn PA. Kanamycin. Med Clin North Amer. 1970;54(5):1245–56. https://doi.org/10.1016/S0025-7125(16)32590-1.
Stein GE, LeBel M, Flor SC, Zinny M. Bioavailability and pharmacokinetics of oral ofloxacin formulations in regular topics. Present Med Analysis Opinion. 1991;12(8):479–84. https://doi.org/10.1185/03007999109111658.
Fish DN, Chow AT. The scientific pharmacokinetics of levofloxacin. Clin Pharmacokin. 1997;32:101–19. https://doi.org/10.2165/00003088-199732020-00002.
Naidoo A, Naidoo Okay, McIlleron H, Essack S, Padayatchi N. A evaluate of moxifloxacin for the therapy of drug-susceptible tuberculosis. J Clin Pharmacol. 2017;57(11):1369–86.
Begg EJ, Robson RA, Saunders DA, Graham GG, Buttimore RC, Neill AM, City GI. The pharmacokinetics of oral fleroxacin and ciprofloxacin in plasma and sputum throughout acute and persistent dosing. British J Clin Pharmacol. 2000;49(1):32–8. https://doi.org/10.1046/j.1365-2125.2000.00105.x.
Drusano GL, Standiford HC, Plaisance Okay, Forrest A, Leslie J, Caldwell J. Absolute oral bioavailability of ciprofloxacin. Antimicro Brokers Chemo. 1986;30(3):444–6. https://doi.org/10.1128/aac.30.3.444.
Traunmüller F, Zeitlinger M, Zeleny P, Müller M, Joukhadar C. Pharmacokinetics of single-and multiple-dose oral clarithromycin in delicate tissues decided by microdialysis. Antimicro Brokers Chemo. 2007;51(9):3185–9. https://doi.org/10.1128/aac.00532-07.
Patel DS, Sharma N, Patel MC, Patel BN, Shrivastav PS, Sanyal M. Growth and validation of a selective and delicate LC–MS/MS technique for dedication of cycloserine in human plasma: utility to bioequivalence research. J Chrom B. 2011;879(23):2265–73. https://doi.org/10.1016/j.jchromb.2011.06.011.
Peloquin CA, Henshaw TL, Huitt GA, Berning SE, Nitta AT, James GT. Pharmacokinetic analysis of para-aminosalicylic acid granules. Pharmaco J Human Pharmacol Drug Remedy. 1994;14(1):40–6. https://doi.org/10.1002/j.1875-9114.1994.tb02787.x.
Abdelwahab MT, Wasserman S, Brust JC, Gandhi NR, Meintjes G, Everitt D, Diacon A, Dawson R, Wiesner L, Svensson EM, Maartens G. Clofazimine pharmacokinetics in sufferers with TB: dosing implications. J Antimicro Chemo. 2020;75(11):3269–77. https://doi.org/10.1093/jac/dkaa310.
Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E. Section I, single-dose, dose-escalating research of inhaled dry powder capreomycin: a brand new method to remedy of drug-resistant tuberculosis. Antimicrobial brokers and chemotherapy. 2013;57(6):2613–9. https://doi.org/10.1128/aac.02346-12.
Ahmad M, Madni AU, Usman M. In-vitro launch and pharmacokinetics of anti-tubercle drug ethionamide in wholesome male topics. J Bioanal Biomed. 2009;1:046–9. https://doi.org/10.4172/1948-593X.1000010.
Venkatesan Okay. Scientific pharmacokinetic issues within the therapy of sufferers with leprosy. Clin Pharmaco. 1989;16:365–86. https://doi.org/10.2165/00003088-198916060-00003.
Yun HY, Chang MJ, Jung H, Chang V, Wang Q, Strydom N, Yoon YR, Savic RM. Prothionamide dose optimization utilizing inhabitants pharmacokinetics for multidrug-resistant tuberculosis sufferers. Antimicro Brokers Chemo. 2022;66(9):e01893–21. https://doi.org/10.1128/aac.01893-21.
Holdiness MR. Scientific pharmacokinetics of the antituberculosis medication. Clin Pharmaco. 1984;9:511–44. https://doi.org/10.2165/00003088-198409060-00003.
Zitkova L, Tousek J. Pharmacokinetics of cycloserine and terizidone. Chemotherapy. 1974;20(18):28. https://doi.org/10.1159/000221787.
Skinner MH, Hsieh M, Torseth J, Pauloin D, Bhatia GU, Harkonen S, Merigan TC, Blaschke TF. Pharmacokinetics of rifabutin. Antimicro Brokers Chemo. 1989;8:1237–41. https://doi.org/10.1128/aac.33.8.1237.
Stalker DJ, Jungbluth GL. Scientific pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmaco. 2003;42:1129–40. https://doi.org/10.2165/00003088-200342130-00004.
Chahine EB, Karaoui LR, Mansour H. Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Annals Pharmaco. 2014;48(1):107–15. https://doi.org/10.1177/1060028013504087.
Salinger DH, Subramoney V, Everitt D, Nedelman JR. Inhabitants pharmacokinetics of the antituberculosis agent pretomanid. Antimicro Brokers Chemo. 2019;63(10):e00907–19. https://doi.org/10.1128/aac.00907-19.
Biswas B, Misra TK, Ray D, Majumder T, Bandyopadhyay TK, Bhowmick TK. Present therapeutic supply approaches utilizing nanocarriers for the therapy of tuberculosis illness. Int J Pharm. 2023. https://doi.org/10.1016/j.ijpharm.2023.123018.
Langer R. Drug supply and focusing on. Nature. 1998;392(6679 Suppl):5–10.
Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate-based nanocarriers and their utility to focus on macrophages and ship antimicrobial brokers. Adv Drug Deliv Rev. 2019;151:94–129.
Afinjuomo F, Abdella S, Youssef SH, Track Y, Garg S. Inulin and its utility in drug supply. Prescribed drugs. 2021;14(9):855.
Putri KSS, Ramadhani LS, Rachel T, Suhariyono G, Surini S. Promising chitosan-alginate mixture for rifampicin dry powder inhaler to focus on energetic and latent tuberculosis. J Appl Pharm Sci. 2022;12(5):098–103.
Longuinho MM, Leitão SG, Silva RS, Silva PE, Rossi AL, Finotelli PV. Lapazine loaded alginate/chitosan microparticles: enhancement of anti-mycobacterium exercise. J Drug Deliv Sci Technol. 2019;54:101292.
Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, Fresta M, Nie G, Chen C, Shen H. Security of nanoparticles in medication. Curr Drug Targets. 2015;16(14):1671–81.
Khairnar SV, Pagare P, Thakre A, Nambiar AR, Junnuthula V, Abraham MC, Kolimi P, Nyavanandi D, Dyawanapelly S. Overview on the scale-up strategies for the preparation of stable lipid nanoparticles. Pharmaceutics. 2022;14(9):1886.
Junnuthula V, Kolimi P, Nyavanandi D, Sampathi S, Vora LK, Dyawanapelly S. Polymeric micelles for breast most cancers remedy: current updates, scientific translation and regulatory issues. Pharmaceutics. 2022;14(9):1860.
Sundar S, Chakravarty J. Liposomal amphotericin B and leishmaniasis: dose and response. J International Infect Dis. 2010;2(2):159.
Mitchell SL, Carlson EE. Tiny issues with monumental influence: nanotechnology within the struggle towards infectious illness. ACS Infect Dis. 2018;4(10):1432–5.
Desai N. Challenges in improvement of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.
Ioannidis J, Kim B, Trounson A. Learn how to design preclinical research in nanomedicine and cell remedy to maximise the prospects of scientific translation. Nat Biomed Eng. 2018;2(11):797–809.
Chimote G, Banerjee R. In vitro analysis of inhalable isoniazid-loaded surfactant liposomes as an adjunct remedy in pulmonary tuberculosis. J Biomed Mater Res B Appl Biomater. 2010;94(1):1–10.
Karki R, Mamatha G, Subramanya G, Udupa N. Preparation, characterization and tissue disposition of niosomes containing isoniazid. Rasayan J Chem. 2008;1(2):224–7.
Singh G, Dwivedi H, Saraf SK, Saraf SA. Niosomal supply of isoniazid-development and characterization. Trop J Pharm Res. 2011. https://doi.org/10.4314/tjpr.v10i2.66564.
Vatanparast M, Shariatinia Z. Computational research on the doped graphene quantum dots as potential carriers in drug supply programs for isoniazid drug. Struct Chem. 2018;29(5):1427–48.
Chen G, Wu Y, Yu D, Li R, Luo W, Ma G, Zhang C. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound therapeutic of bone tuberculosis. J Biomater Appl. 2019;33(7):989–96.
Zomorodbakhsh S, Abbasian Y, Naghinejad M, Sheikhpour M. The consequences research of isoniazid conjugated multi-wall carbon nanotubes nanofluid on Mycobacterium tuberculosis. Int J Nanomed. 2020;15:5901.
Fernández-Paz C, Fernández-Paz E, Salcedo-Abraira P, Rojas S, Barrios-Esteban S, Csaba N, Horcajada P, Remuñán-López C. Microencapsulated isoniazid-loaded metal-organic frameworks for pulmonary administration of antituberculosis medication. Molecules. 2021;26(21):6408.
Anjani QK, Permana AD, Cárcamo-Martínez Á, Domínguez-Robles J, Tekko IA, Larrañeta E, Vora LK, Ramadon D, Donnelly RF. Versatility of hydrogel-forming microneedles in in vitro transdermal supply of tuberculosis medication. Eur J Pharm Biopharm. 2021;158:294–312.
Telange DR, Pandharinath RR, Pethe AM, Jain SP, Pingale PL. Calcium ion-sodium alginate-piperine-based microspheres: proof of enhanced encapsulation effectivity, bio-adhesion, managed supply, and oral bioavailability of isoniazid. AAPS PharmSciTech. 2022;23(4):1–18.
Jain C, Vyas S. Preparation and characterization of niosomes containing rifampicin for lung focusing on. J Microencapsul. 1995;12(4):401–7.
Jain C, Vyas S, Dixit V. Niosomal system for supply of rifampicin to lymphatics. Indian J Pharm Sci. 2006. https://doi.org/10.4103/0250-474X.29622.
Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Goal. 2006;14(8):546–56.
Takenaga M, Ohta Y, Tokura Y, Hamaguchi A, Igarashi R, Disratthakit A, Doi N. Lipid microsphere formulation containing rifampicin targets alveolar macrophages. Drug Deliv. 2008;15(3):169–75.
Patil JS, Devi VK, Devi Okay, Sarasija S. A novel method for lung supply of rifampicin-loaded liposomes in dry powder type for the therapy of tuberculosis. Lung India. 2015;32(4):331.
Bellini RG, Guimarães AP, Pacheco MA, Dias DM, Furtado VR, de Alencastro RB, Horta BA. Affiliation of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Mannequin. 2015;60:34–42.
Parmar R, Misra R, Mohanty S. In vitro managed launch of Rifampicin by way of liquid-crystalline folate nanoparticles. Colloids Surf, B. 2015;129:198–205.
Rajabnezhad S, Casettari L, Lam JK, Nomani A, Torkamani MR, Palmieri GF, Rajabnejad MR, Darbandi MA. Pulmonary supply of rifampicin microspheres utilizing decrease technology polyamidoamine dendrimers as a provider. Powder Technol. 2016;291:366–74.
Tran N, Hocquet M, Eon B, Sangwan P, Ratcliffe J, Hinton TM, White J, Ozcelik B, Reynolds NP, Muir BW. Non-lamellar lyotropic liquid crystalline nanoparticles improve the antibacterial results of rifampicin towards Staphylococcus aureus. J Colloid Interface Sci. 2018;519:107–18.
Ola M, Bhaskar R, Patil GR. Liquid crystalline drug supply system for sustained launch loaded with an antitubercular drug. J Drug Deliv Ther. 2018;8(4):93–101.
Thomas D, Latha M, Thomas KK. Synthesis and in vitro analysis of alginate-cellulose nanocrystal hybrid nanoparticles for the managed oral supply of rifampicin. J Drug Deliv Sci Technol. 2018;46:392–9.
Tripodo G, Perteghella S, Grisoli P, Trapani A, Torre ML, Mandracchia D. Drug supply of rifampicin by pure micelles primarily based on inulin: physicochemical properties, antibacterial exercise and human macrophages uptake. Eur J Pharm Biopharm. 2019;136:250–8.
Suárez-González J, Santoveña-Estévez A, Soriano M, Fariña JB. Design and optimization of a child-friendly dispersible pill containing isoniazid, pyrazinamide, and rifampicin for treating tuberculosis in pediatrics. Drug Develop Indus Pharm. 2020;46(2):309–17. https://doi.org/10.1080/03639045.2020.1717516.
Grotz E, Tateosian NL, Salgueiro J, Bernabeu E, Gonzalez L, Manca ML, Amiano N, Valenti D, Manconi M, García V. Pulmonary supply of rifampicin-loaded soluplus micelles towards Mycobacterium tuberculosis. J Drug Deliv Sci Technol. 2019;53:101170.
Pi J, Shen L, Shen H, Yang E, Wang W, Wang R, Huang D, Lee B-S, Hu C, Chen C. Mannosylated graphene oxide as macrophage-targeted supply system for enhanced intracellular M. tuberculosis killing effectivity. Mater Sci Eng C. 2019;103:109777.
Henostroza MAB, Melo KJC, Yukuyama MN, Löbenberg R, Bou-Chacra NA. Cationic rifampicin nanoemulsion for the therapy of ocular tuberculosis. Colloids Surf A. 2020;597:124755.
El-Ridy MS, Yehia SA, Kassem MA-E-M, Mostafa DM, Nasr EA, Asfour MH. Niosomal encapsulation of ethambutol hydrochloride for rising its efficacy and security. Drug Deliv. 2015;22(1):21–36.
Nemati E, Mokhtarzadeh A, Panahi-Azar V, Mohammadi A, Hamishehkar H, Mesgari-Abbasi M, Ezzati Nazhad Dolatabadi J, de la Guardia M. Ethambutol-loaded stable lipid nanoparticles as dry powder inhalable formulation for tuberculosis remedy. AAPS PharmSciTech. 2019;20(3):1–9.
Vladimirsky M, Ladigina G. Antibacterial exercise of liposome-entrapped streptomycin in mice contaminated with Mycobacterium tuberculosis. Biomed Pharmacotherap. 1982;36(8–9):375–7.
Cynamon MH, Swenson CE, Palmer GS, Ginsberg RS. Liposome-encapsulated-amikacin remedy of Mycobacterium avium complicated an infection in beige mice. Antimicrob Brokers Chemother. 1989;33(8):1179–83. https://doi.org/10.1128/aac.33.8.1179.
Gaidukevich S, Mikulovich YL, Smirnova T, Andreevskaya S, Sorokoumova G, Chernousova L, Selishcheva A, Shvets V. Antibacterial results of liposomes containing phospholipid cardiolipin and fluoroquinolone levofloxacin on Mycobacterium tuberculosis with in depth drug resistance. Bull Exp Biol Med. 2016;160(5):675–8.
Gaspar M, Cruz A, Penha A, Reymão J, Sousa A, Eleutério C, Domingues S, Fraga A, Longatto Filho A, Cruz M. Rifabutin encapsulated in liposomes displays elevated therapeutic exercise in a mannequin of disseminated tuberculosis. Int J Antimicrob Brokers. 2008;31(1):37–45.
Gaspar MM, Neves S, Portaels F, Pedrosa J, Silva MT, Cruz MEM. Therapeutic efficacy of liposomal rifabutin in a Mycobacterium avium mannequin of an infection. Antimicrob Brokers Chemother. 2000;44(9):2424–30.
Sandler ED, Ng V, Hadley W. Clofazimine crystals in alveolar macrophages from a affected person with the acquired immunodeficiency syndrome. Arch Pathol Lab Med. 1992;116(5):541–3.
Mehta RT. Liposome encapsulation of clofazimine reduces toxicity in vitro and in vivo and improves therapeutic efficacy within the beige mouse mannequin of disseminated Mycobacterium avium-M. intracellulare complicated an infection. Antimicrob Brokers Chemother. 1996;40(8):1893–902.
Kansal RG, Gomez-Flores R, Sinha I, Mehta RT. Therapeutic efficacy of liposomal clofazimine towards Mycobacterium avium complicated in mice is dependent upon measurement of preliminary inoculum and length of an infection. Antimicrob Brokers Chemother. 1997;41(1):17–23.
Adams LB, Sinha I, Franzblau SG, Krahenbuhl JL, Mehta RT. Efficient therapy of acute and persistent murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob Brokers Chemother. 1999;43(7):1638–43.
de Castro RR, Todaro V, da Silva LCRP, Simon A, do Carmo FA, de Sousa VP, Rodrigues CR, Sarmento B, Healy AM, Cabral LM. Growth of inhaled formulation of modified clofazimine as an alternative choice to therapy of tuberculosis. J Drug Deliv Sci Technol. 2020;58:101805.
Kisich Okay, Gelperina S, Higgins M, Wilson S, Shipulo E, Oganesyan E, Heifets L. Encapsulation of moxifloxacin inside poly (butyl cyanoacrylate) nanoparticles enhances efficacy towards intracellular Mycobacterium tuberculosis. Int J Pharm. 2007;345(1–2):154–62.
Costa-Gouveia J, Pancani E, Jouny S, Machelart A, Delorme V, Salzano G, Iantomasi R, Piveteau C, Queval CJ, Track O-R. Mixture remedy for tuberculosis therapy: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci Rep. 2017;7(1):1–14.
Garcia-Contreras L, Padilla-Carlin DJ, Sung J, VerBerkmoes J, Muttil P, Elbert Okay, Peloquin C, Edwards D, Hickey A. Pharmacokinetics of ethionamide delivered in spray-dried microparticles to the lungs of guinea pigs. J Pharm Sci. 2017;106(1):331–7.
De Maio F, Palmieri V, Santarelli G, Perini G, Salustri A, Palucci I, Sali M, Gervasoni J, Primiano A, Ciasca G. Graphene oxide-linezolid mixture as potential new anti-tuberculosis therapy. Nanomaterials. 2020;10(8):1431.
Sercombe L, Veerati T, Moheimani F, Wu S, Sood A, Hua S. 2015 Advances and challenges of liposome assisted drug supply. Entrance Pharmacol. 2015;6:286.
Orozco LC, Quintana FO, Beltrán RM, de Moreno I, Wasserman M, Rodriguez G. Using rifampicin and isoniazid entrapped in liposomes for the therapy of murine tuberculosis. Tubercle. 1986;67(2):91–7.
Bhardwaj A, Kumar L, Narang RK, Murthy RS. Growth and characterization of ligand-appended liposomes for a number of drug remedy for pulmonary tuberculosis. Synthetic cells, nanomedicine, and biotechnology. 2013;41(1):52–59. https://doi.org/10.3109/10731199.2012.702316.
Liu P, Guo B, Wang S, Ding J, Zhou W. A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug provider for localized bone tuberculosis remedy. Int J Pharm. 2019;558:101–9.
Bhardwaj A, Grobler A, Rath G, Kumar Goyal A, Kumar Jain A, Mehta A. Pulmonary supply of anti-tubercular medication utilizing ligand anchored pH delicate liposomes for the therapy of pulmonary tuberculosis. Curr Drug Deliv. 2016;13(6):909–22.
Greco E, Quintiliani G, Santucci MB, Serafino A, Ciccaglione AR, Marcantonio C, Papi M, Maulucci G, Delogu G, Martino A. Janus-faced liposomes improve antimicrobial innate immune response in Mycobacterium tuberculosis an infection. Proc Natl Acad Sci. 2012;109(21):E1360–8.
Miretti M, Juri L, Cosiansi MC, Tempesti TC, Baumgartner MT. Antimicrobial results of ZnPc delivered into liposomes on multidrug resistant (MDR)-mycobacterium tuberculosis. ChemistrySelect. 2019;4(33):9726–30.
Rosada RS, Silva CL, Santana MHA, Nakaie CR, de la Torre LG. Effectiveness, towards tuberculosis, of pseudo-ternary complexes: peptide-DNA-cationic liposome. J Colloid Interface Sci. 2012;373(1):102–9.
Bekraki AI. Liposomes-and niosomes-based drug supply programs for tuberculosis therapy. In: Kesharwani Prashant, editor. Nanotechnology primarily based approaches for tuberculosis therapy. Amsterdam: Elsevier; 2020.
Patil Okay, Bagade S, Bonde S, Sharma S, Saraogi G. Current therapeutic approaches for the administration of tuberculosis: challenges and alternatives. Biomed Pharmacother. 2018;99:735–45. https://doi.org/10.1016/j.biopha.2018.01.115.
Kaur IP, Singh H. Nanostructured drug supply for higher administration of tuberculosis. J Management Launch. 2014;184:36–50.
Bibhas C, Narahari N. Exploring the usage of lipid primarily based nano-formulations for the administration of tuberculosis. J Nanosci Curr Res. 2017;2(112):2572–813.
Bibhas C, Subas C, Gitanjali M, Narahari N. Exploring the usage of lipid primarily based nano-formulations for the administration of tuberculosis. J Nanosci Curr Res. 2017;2(112):2572–813.
Hanieh PN, Consalvi S, Forte J, Cabiddu G, De Logu A, Poce G, Rinaldi F, Biava M, Carafa M, Marianecci C. Nano-based drug supply programs of potent MmpL3 inhibitors for tuberculosis therapy. Pharmaceutics. 2022;14(3):610.
Sadhu PK, Saisivam S, Debnath SK. Design and characterization of niosomes of ethionamide for multi drug resistance tuberculosis. 2019.
Kulkarni P, Rawtani D, Barot T. Formulation and optimization of lengthy appearing twin niosomes utilizing box-Behnken experimental design technique for combinative supply of ethionamide and D-cycloserine in tuberculosis therapy. Colloids Surf A. 2019;565:131–42.
Hussain A, Singh S, Das SS, Anjireddy Okay, Karpagam S, Shakeel F. Nanomedicines as drug supply carriers of anti-tubercular medication: from pathogenesis to an infection management. Curr Drug Deliv. 2019;16(5):400–29.
Van Zyl L, Viljoen JM, Haynes RK, Aucamp M, Ngwane AH, du Plessis J. Topical supply of artemisone, clofazimine and decoquinate encapsulated in vesicles and their in vitro efficacy towards Mycobacterium tuberculosis. AAPS PharmSciTech. 2019;20(1):1–11.
Eldehna WM, El Hassab MA, Abdelshafi NA, Sayed FA-Z, Fares M, Al-Rashood ST, Elsayed ZM, Abdel-Aziz MM, Elkaeed EB, Elsabahy M. Growth of potent nanosized isatin-isonicotinohydrazide hybrid for administration of Mycobacterium tuberculosis. Int J Pharm. 2022;612:121369.
Emami F, Vatanara A, Park EJ, Na DH. Drying applied sciences for the steadiness and bioavailability of biopharmaceuticals. Pharmaceutics. 2018;10(3):131.
Marzaman AN, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Current advances in pharmaceutical approaches of antimicrobial brokers for selective supply in varied administration routes. Antibiotics. 2023;12(5):822. https://doi.org/10.3390/antibiotics12050822.
Dua Okay, Rapalli VK, Shukla SD, Singhvi G, Shastri MD, Chellappan DK, Satija S, Mehta M, Gulati M, Pinto TDJA. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: rising want for novel drug supply approaches. Biomed Pharmacother. 2018;107:1218–29.
Kim SY, Park MS, Kim YS, Kim SK, Chang J, Lee HJ, Cho SN, Kang YA. The responses of a number of cytokines following incubation of entire blood from TB sufferers, latently contaminated people and controls with the TB antigens ESAT‐6, CFP‐10 and TB 7.7. Scand J Immunol. 2012;76(6):580–86. https://doi.org/10.1111/j.1365-3083.2012.02776.x.
Patil SM, Sawant SS, Kunda NK. Inhalable bedaquiline-loaded cubosomes for the therapy of non-small cell lung most cancers (NSCLC). Int J Pharm. 2021;607:121046.
Anjani QK, Domínguez-Robles J, Utomo E, Font M, Martínez-Ohárriz MC, Permana AD, Cárcamo-Martínez Á, Larrañeta E, Donnelly RF. Inclusion complexes of rifampicin with native and derivatized cyclodextrins: in silico modeling, formulation, and characterization. Prescribed drugs. 2021;15(1):20.
Amarnath Praphakar R, Sam Ebenezer R, Vignesh S, Shakila H, Rajan M. Versatile pH-responsive chitosan-g-polycaprolactone/maleic anhydride–isoniazid polymeric micelle to enhance the bioavailability of tuberculosis multidrugs. ACS Appl Bio Mater. 2019;2(5):1931–43.
Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand Okay, Dua Okay. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic purposes: breakthroughs and bottlenecks. J Management Launch. 2021;334:64–95.
Yuan X, Praphakar RA, Munusamy MA, Alarfaj AA, Kumar SS, Rajan M. Mucoadhesive guargum hydrogel inter-connected chitosan-g-polycaprolactone micelles for rifampicin supply. Carbohyd Polym. 2019;206:1–10.
Sheth U, Tiwari S, Bahadur A. Preparation and characterization of anti-tubercular medication encapsulated in polymer micelles. J Drug Deliv Sci Technol. 2018;48:422–8.
Garg NK, Dwivedi P, Jain A, Tyagi S, Sahu T, Tyagi RK. Growth of novel provider (s) mediated tuberculosis vaccine: greater than a tour de pressure. Eur J Pharm Sci. 2014;62:227–42.
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an summary of biomedical purposes. J Management Launch. 2012;161(2):505–22.
Gu X, Cheng Q, He P, Zhang Y, Jiang Z, Zeng Y. Dihydroartemisinin-loaded chitosan nanoparticles inhibit the rifampicin-resistant mycobacterium tuberculosis by disrupting the cell wall. Entrance Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.735166/full.
Abdallah HM, Elella MHA, Abdel-Aziz MM. One-pot inexperienced synthesis of chitosan biguanidine nanoparticles for focusing on M. tuberculosis. Int J Biol Macromol. 2023;232:123394.
Anisimova YV, Gelperina SI, Peloquin CA, Heifets LB. Nanoparticles as antituberculosis medication carriers: impact on exercise towards Mycobacterium tuberculosis in human monocyte-derived macrophages. J Nanopart Res. 2000;2:165–71. https://doi.org/10.1023/A:1010061013365.
Scolari IR, Páez PL, Sánchez-Borzone ME, Granero GE. Promising chitosan-coated alginate-tween 80 nanoparticles as rifampicin coadministered ascorbic acid supply provider towards Mycobacterium tuberculosis. AAPS PharmSciTech. 2019;20(2):1–21.
Nagpal PS, Kesarwani A, Sahu P, Upadhyay P. Aerosol immunization by alginate coated mycobacterium (BCG/MIP) particles present enhanced immune response and protecting efficacy than aerosol of plain mycobacterium towards M. tb. H37Rv an infection in mice. BMC Infect Dis. 2019;19(1):1–14.
Kesarwani A, Sahu P, Jain Okay, Sinha P, Mohan KV, Nagpal PS, Singh S, Zaidi R, Nagarajan P, Upadhyay P. The security and efficacy of BCG encapsulated alginate particle (BEAP) towards M. tb H37Rv an infection in macaca mulatta: a pilot research. Sci Rep. 2021;11(1):1–10.
Najafi A, Ghazvini Okay, Sankian M, Gholami L, Amini Y, Zare S, Khademi F, Tafaghodi M. T helper kind 1 biased immune responses by PPE17 loaded core-shell alginate-chitosan nanoparticles after subcutaneous and intranasal administration. Life Sci. 2021;282:119806.
Kushwaha Okay, Dwivedi H. Interfacial phenomenon primarily based biocompatible alginate-chitosan nanoparticles containing isoniazid and pyrazinamide. Pharm Nanotechnol. 2018;6(3):209–17.
Soria-Carrera H, Lucía A, De Matteis L, Aínsa JA, de la Fuente JM, Martín-Rapún R. Polypeptidic micelles stabilized with sodium alginate improve the exercise of encapsulated bedaquiline. Macromol Biosci. 2019;19(4):1800397.
Latha M, Kurienthomas Okay. Zinc-alginate beads for the managed launch of rifampici. Orient J Chem. 2018;34(1):428.
Chen C-C, Chen Y-Y, Yeh C-C, Hsu C-W, Yu S-J, Hsu C-H, Wei T-C, Ho S-N, Tsai P-C, Track Y-D. Alginate-capped silver nanoparticles as a potent anti-mycobacterial agent towards mycobacterium tuberculosis. Entrance Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.746496/full.
Liu Z, Ye L, Xi J, Wang J, Feng Z-G. Cyclodextrin polymers: construction, synthesis, and use as drug carriers. Prog Poly Sci. 2021;118:101408.
Abdellatif FHH, Abdellatif MM. Utilization of sustainable biopolymers in textile processing. In: Ibrahim Nabil, Hussain Chaudhery Mustansar, editors. Inexperienced chemistry for sustainable textiles. Amsterdam: Elsevier; 2021.
Tiwari G, Tiwari R, Rai AK. Cyclodextrins in supply programs: purposes. J Pharm Bioall Sci. 2010;2(2):72–9.
Crini G. A historical past of cyclodextrins. Chem Rev. 2014;114(21):10940–75.
Basha RY, TS SK, Doble M. Twin supply of tuberculosis medication by way of cyclodextrin conjugated curdlan nanoparticles to contaminated macrophages. Carbohydr Polym. 2019;218:53–62.
Nkanga CI, Krause RWM. Encapsulation of isoniazid-conjugated phthalocyanine-in-cyclodextrin-in-liposomes utilizing heating technique. Sci Rep. 2019;9(1):1–16.
Maiti PK, Çaǧın T, Wang G, Goddard WA. Construction of PAMAM dendrimers: generations 1 by way of 11. Macromolecules. 2004;37(16):6236–54.
Kaur D, Jain Okay, Mehra NK, Kesharwani P, Jain NK. A evaluate on comparative research of PPI and PAMAM dendrimers. J Nanopart Res. 2016;18(6):1–14.
Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, Gorain B, Khurana S, Kesharwani P. Using nanoparticles as biomaterials in dentistry. Drug Discov Immediately. 2019;24(1):85–98.
Madaan Okay, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug supply and focusing on: drug-dendrimer interactions and toxicity points. J Pharm Bioall Sci. 2014;6(3):139.
Chauhan AS. Dendrimers for drug supply. Molecules. 2018;23(4):938.
Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design issues for nanomedical purposes. Drug Discov Immediately. 2010;15(5–6):171–85.
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug supply programs: historical past, challenges, and newest developments. J Biol Eng. 2022;16(1):1–12.
Parekh H. The advance of dendrimers-a versatile focusing on platform for gene/drug supply. Curr Pharm Des. 2007;13(27):2837–50.
Choudhary S, Gupta L, Rani S, Dave Okay, Gupta U. Impression of dendrimers on solubility of hydrophobic drug molecules. Entrance Pharmacol. 2017;16(8):261. https://doi.org/10.3389/fphar.2017.00261.
Bodewein L, Schmelter F, Di Fiore S, Hollert H, Fischer R, Fenske M. Variations in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and most cancers cell strains. Toxicol Appl Pharmacol. 2016;305:83–92.
Bellini RG, Guimarães AP, Pacheco MA, Dias DM, Furtado VR, de Alencastro RB, Horta BA. Affiliation of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Mannequin. 2015;60:34–42. https://doi.org/10.1016/j.jmgm.2015.05.012.
Karthikeyan R, Koushik O, Kumar V. Floor modification of cationic dendrimers eases drug supply of anticancer medication. Nanosci Nanotechnol. 2016;10:108.
Kaur M, Garg T, Narang R. A evaluate of rising tendencies within the therapy of tuberculosis. Artif Cells Nanomed Biotechnol. 2016;44(2):478–84.
Srinivasan M, Rajabi M, Mousa SA. Multifunctional nanomaterials and their purposes in drug supply and most cancers remedy. Nanomaterials. 2015;5(4):1690–703.
Zohuri G. Polymer science: a complete reference. Amsterdam: Elsevier; 2012.
Leng Z-H, Zhuang Q-F, Li Y-C, He Z, Chen Z, Huang S-P, Jia H-Y, Zhou J-W, Liu Y, Du L-B. Polyamidoamine dendrimer conjugated chitosan nanoparticles for the supply of methotrexate. Carbohyd Polym. 2013;98(1):1173–8.
Jain A, Jain Okay, Mehra NK, Jain N. Lipoproteins tethered dendrimeric nanoconstructs for efficient focusing on to most cancers cells. J Nanopart Res. 2013;15(10):1–18.
Bernkop-Schnürch A, Scholler S, Biebel RG. Growth of managed drug launch programs primarily based on thiolated polymers. J Management Launch. 2000;66(1):39–48.
Muttil P, Kaur J, Kumar Okay, Yadav AB, Sharma R, Misra A. Inhalable microparticles containing massive payload of anti-tuberculosis medication. Eur J Pharm Sci. 2007;32(2):140–50.
Sharma S, Khuller G, Garg S. Alginate-based oral drug supply system for tuberculosis: pharmacokinetics and therapeutic results. J Antimicrob Chemother. 2003;51(4):931–8.
Soto E, Kim YS, Lee J, Kornfeld H, Ostroff G. Glucan particle encapsulated rifampicin for focused supply to macrophages. Polymers. 2010;2(4):681–9.
Upadhyay TK, Fatima N, Sharma D, Saravanakumar V, Sharma R. Preparation and characterization of beta-glucan particles containing a payload of nanoembedded rifabutin for enhanced focused supply to macrophages. EXCLI J. 2017;16:210.
Rawal T, Kremer L, Halloum I, Butani S. Dry-powder inhaler formulation of rifampicin: an improved focused supply system for alveolar tuberculosis. J Aero Med Pulm Drug Supply. 2017;30(6):388–98. https://doi.org/10.1089/jamp.2017.1379.
Cunha L, Rosa da Costa AM, Lourenço JP, Buttini F, Grenha A. Spray-dried fucoidan microparticles for pulmonary supply of antitubercular medication. J Microencapsul. 2018;35(4):392–405.
Cunha L, Rodrigues S, Rosa da Costa AM, Faleiro ML, Buttini F, Grenha A. Inhalable fucoidan microparticles combining two antitubercular medication with potential utility in pulmonary tuberculosis remedy. Polymers. 2018;10(6):636.
Cunha L, Rodrigues S, da Costa AMR, Faleiro L, Buttini F, Grenha A. Inhalable chitosan microparticles for simultaneous supply of isoniazid and rifabutin in lung tuberculosis therapy. Drug Dev Ind Pharm. 2019. https://doi.org/10.1080/03639045.2019.1608231.
Sharma A, Vaghasiya Okay, Ray E, Gupta P, Singh AK, Gupta UD, Verma RK. Mycobactericidal exercise of some micro-encapsulated artificial host protection peptides (HDP) by expediting the permeation of antibiotic: a brand new paradigm of drug supply for tuberculosis. Int J Pharm. 2019;558:231–41.
Vasudevan S, Venkatraman A, Yahoob SAM, Jojula M, Sundaram R, Boomi P. Biochemical analysis and molecular docking research on encapsulated astaxanthin for the expansion inhibition of Mycobacterium tuberculosis. J Appl Biol Biotechnol. 2021;9(1):3–9.
Sharma A, Vaghasiya Okay, Ray E, Gupta P, Gupta UD, Singh AK, Verma RK. Focused pulmonary supply of the inexperienced tea polyphenol epigallocatechin gallate controls the expansion of mycobacterium tuberculosis by enhancing the autophagy and suppressing bacterial burden. ACS Biomater Sci Eng. 2020;6(7):4126–40.
Gaspar MC, Grégoire N, Sousa JJ, Pais AA, Lamarche I, Gobin P, Olivier J-C, Marchand S, Couet W. Pulmonary pharmacokinetics of levofloxacin in rats after aerosolization of immediate-release chitosan or sustained-release PLGA microspheres. Eur J Pharm Sci. 2016;93:184–91.
Vidyadevi B. Direct lungs focusing on: an alternate therapy method for pulmonary tuberculosis. Asian J Pharm (AJP). 2021. https://doi.org/10.2237/ajp.v15i04.4212.
Pingale PL, Amrutkar SV. Quercetin loaded rifampicin-floating microspheres for improved stability and invitro drug launch. Pharmacophore. 2021;12(3):95–9. https://doi.org/10.51847/yBXnl2bSUH.
Mwila C, Walker RB. Improved stability of rifampicin within the presence of gastric-resistant isoniazid microspheres in acidic media. Pharmaceutics. 2020;12(3):234.
Luciani-Giacobbe LC, Lorenzutti AM, Litterio NJ, Ramírez-Rigo MV, Olivera ME. Anti-tuberculosis site-specific oral supply system that enhances rifampicin bioavailability in a fixed-dose mixture with isoniazid. Drug Supply Trans Re. 2021;11:894–908. https://doi.org/10.1007/s13346-020-00847-9.
Upadhyay S, Khan I, Gothwal A, Pachouri PK, Bhaskar N, Gupta UD, Chauhan DS, Gupta U. Conjugated and entrapped HPMA-PLA nano-polymeric micelles primarily based twin supply of first line anti TB medication: improved and secure drug supply towards delicate and resistant Mycobacterium tuberculosis. Pharm Res. 2017;34(9):1944–55.
Moradi S, Taran M, Mohajeri P, Sadrjavadi Okay, Sarrami F, Karton A, Shahlaei M. Research of twin encapsulation risk of hydrophobic and hydrophilic medication right into a nanocarrier primarily based on bio-polymer coated graphene oxide utilizing density practical principle, molecular dynamics simulation and experimental strategies. J Mol Liq. 2018;262:204–17.
Zhu M, Li Okay, Zhu Y, Zhang J, Ye X. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug supply and osteoarticular tuberculosis remedy. Acta Biomater. 2015;16:145–55.
Tabriz AG, Nandi U, Harm AP, Hui H-W, Karki S, Gong Y, Kumar S, Douroumis D. 3D printed bilayer pill with twin managed drug launch for tuberculosis therapy. Int J Pharm. 2021;593:120147.
Clemens DL, Lee B-Y, Xue M, Thomas CR, Meng H, Ferris D, Nel AE, Zink JI, Horwitz MA. Focused intracellular supply of antituberculosis medication to Mycobacterium tuberculosis-infected macrophages by way of functionalized mesoporous silica nanoparticles. Antimicrob Brokers Chemother. 2012;56(5):2535–45.
Mehta S, Kaur G, Bhasin Okay. Tween-embedded microemulsions—physicochemical and spectroscopic evaluation for antitubercular medication. AAPS PharmSciTech. 2010;11(1):143–53.
Kaur G, Mehta S, Kumar S, Bhanjana G, Dilbaghi N. Coencapsulation of hydrophobic and hydrophilic antituberculosis medication in synergistic Brij 96 microemulsions: a biophysical characterization. J Pharm Sci. 2015;104(7):2203–12.
Mulia Okay, Chadarwati S, Rahyussalim A, Krisanti E. Preparation and characterization of polyvinyl alcohol-chitosan-tripolyphosphate hydrogel for prolonged launch of anti-tuberculosis medication. IOP Conf Ser Mater Sci Eng. 2019. https://doi.org/10.1088/1757-899X/703/1/012010.
Krisanti EA, Gofara TZ, Rahyussalim AJ, Mulia Okay. Polyvinyl alcohol (PVA)/chitosan/sodium tripolyphosphate (STPP) hydrogel formulation with freeze-thaw technique for anti-tuberculosis medication prolonged launch. AIP Conf Proc. 2021. https://doi.org/10.1063/5.0063175.
Tudose M, Anghel EM, Culita DC, Somacescu S, Calderon-Moreno J, Tecuceanu V, Dumitrascu FD, Dracea O, Popa M, Marutescu L. Covalent coupling of tuberculostatic brokers and graphene oxide: a promising method for enhancing and increasing their antimicrobial purposes. Appl Surf Sci. 2019;471:553–65.
Sheikhpour M, Delorme V, Kasaeian A, Amiri V, Masoumi M, Sadeghinia M, Ebrahimzadeh N, Maleki M, Pourazar S. An efficient nano drug supply and mixture remedy for the therapy of tuberculosis. Sci Rep. 2022;12(1):1–11.
Chowdhury P, Shankar U. Formulation and analysis of Rifampicin and Ofloxacin niosomes for Drugresistant TB on Logarithmic-phase cultures of Mycobacterium tuberculosis. Int J Res Pharma Sci (IJRPS). 2016;3(4):628–33.
Ferraz-Carvalho RS, Pereira MA, Linhares LA, Lira-Nogueira MC, Cavalcanti IM, Santos-Magalhães NS, Montenegro LM. Results of the encapsulation of usnic acid into liposomes and interactions with antituberculous brokers towards multidrug-resistant tuberculosis scientific isolates. Mem Inst Oswaldo Cruz. 2016;111:330–4.
Yousefi A, Khodaverdi E, Atyabi F, Dinarvand R. Thermosensitive drug permeation by way of liquid crystal-embedded cellulose nitrate membranes. PDA J Pharm Sci Technol. 2010;64(1):54–62.
Kramer RM, Archer MC, Orr MT, Cauwelaert ND, Beebe EA, Po-wei DH, Dowling QM, Schwartz AM, Fedor DM, Vedvick TS. Growth of a thermostable nanoemulsion adjuvanted vaccine towards tuberculosis utilizing a design-of-experiments method. Int J Nanomed. 2018;13:3689.
de Almeida A, Caleffi-Ferracioli Okay, de Regiane B, Scodro L, Baldin VP, Montaholi DC, Spricigo LF, Nakamura-Vasconcelos SS, Hegeto LA, Sampiron EG, Costacurta GF, dos Diego A, Yamazaki S, de Gauze FG, Siqueira VL, Cardoso RF. Eugenol and derivatives exercise towards Mycobacterium tuberculosis, nontuberculous mycobacteria and different micro organism. Future Microbiol. 2019;14:331–44.
Zhang G, Sheng L, Hegde P, Li Y, Aldrich CC. 8-cyanobenzothiazinone analogs with potent antitubercular exercise. Med Chem Res. 2021;30(2):449–58.
Kumar U, Singh RK. Scientific efficacy of beta-sitosterol as adjuvant remedy for the therapy of tuberculosis in kids. Int J Paediatr Geriatr. 2021;4(1):141–3. https://doi.org/10.33545/26643685.2021.v4.i1c.144.
Rudolph D, Redinger N, Schaible UE, Feldmann C. Transport of lipophilic anti-tuberculosis drug benzothiazone-043 in Ca3 (PO4) 2 nanocontainers. ChemNanoMat. 2021;7(1):7–16.
Gupta A, Pandey S, Yadav JS. A evaluate on current tendencies in inexperienced synthesis of gold nanoparticles for tuberculosis. Adv Pharm Bull. 2021;11(1):10.
Govindaraju Okay, Vasantharaja R, Suganya KU, Anbarasu S, Revathy Okay, Pugazhendhi A, Karthickeyan D, Singaravelu G. Unveiling the anticancer and antimycobacterial potentials of bioengineered gold nanoparticles. Course of Biochem. 2020;96:213–9.
Srivastava N, Mukhopadhyay M. Biosynthesis and characterization of gold nanoparticles utilizing Zooglea ramigera and evaluation of its antibacterial property. J Cluster Sci. 2015;26(3):675–92.
Solar C, Zhang X, Wang J, Chen Y, Meng C. Novel mesoporous silica nanocarriers containing gold; a speedy diagnostic software for tuberculosis. BMC Complement Med Ther. 2021;21(1):1–7.
Gilbride B, Moreira GMSG, Hust M, Cao C, Stewart L. Catalytic ferromagnetic gold nanoparticle immunoassay for the detection and differentiation of Mycobacterium tuberculosis and Mycobacterium bovis. Anal Chim Acta. 2021;1184:339037.
Li J, Hu Okay, Zhang Z, Teng X, Zhang X. Click on DNA biking together with gold nanoparticles loaded with quadruplex DNA motifs allow delicate electrochemical quantitation of the tuberculosis-associated biomarker CFP-10 in sputum. Microchim Acta. 2019;186(9):1–7.
Singh N, Dahiya B, Radhakrishnan VS, Prasad T, Mehta PK. Detection of Mycobacterium tuberculosis purified ESAT-6 (Rv3875) by magnetic bead-coupled gold nanoparticle-based immuno-PCR assay. Int J Nanomed. 2018;13:8523.
Sadanandan P, Payne NL, Solar G, Ashokan A, Gowd SG, Lal A, Kumar MKS, Pulakkat S, Nair SV, Menon KN. Exploiting the preferential phagocytic uptake of nanoparticle-antigen conjugates for the efficient therapy of autoimmunity. Nanomed Nanotechnol Biol Med. 2022;40:102481.
Saravanan V, Ramachandran M, Prasanth V: Exploring varied Silver Nanoparticles and Nanotechnology. 2022.
Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medication—current advances. Adv Drug Deliv Rev. 2013;65(5):689–702.
Hwang J, Son J, Website positioning Y, Jo Y, Lee Okay, Lee D, Khan MS, Chavan S, Park C, Sharma A. Practical silica nanoparticles conjugated with beta-glucan to ship anti-tuberculosis drug molecules. J Ind Eng Chem. 2018;58:376–85.
Tenland E, Pochert A, Krishnan N, Umashankar Rao Okay, Kalsum S, Braun Okay, Glegola-Madejska I, Lerm M, Robertson BD, Lindén M. Efficient supply of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS ONE. 2019;14(2):e0212858.
Beitzinger B, Gerbl F, Vomhof T, Schmid R, Noschka R, Rodriguez A, Wiese S, Weidinger G, Ständker L, Walther P. Antimicrobial peptides: supply by dendritic mesoporous silica nanoparticles enhances the antimicrobial exercise of a napsin-derived peptide towards intracellular Mycobacterium tuberculosis (Adv. Healthcare Mater. 14/2021). Adv Healthcare Mater. 2021;10(14):2170066.
Montalvo-Quirós S, Gómez-Graña S, Vallet-Regí M, Prados-Rosales RC, González B, Luque-Garcia JL. Mesoporous silica nanoparticles containing silver as novel antimycobacterial brokers towards Mycobacterium tuberculosis. Colloids Surf, B. 2021;197:111405.
Chen W, Cheng C-A, Lee B-Y, Clemens DL, Huang W-Y, Horwitz MA, Zink JI. Facile technique enabling each excessive loading and excessive launch quantities of the water-insoluble drug clofazimine utilizing mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2018;10(38):31870–81.
Ang CW, Tan L, Qu Z, West NP, Cooper MA, Popat A, Blaskovich MA. Mesoporous silica nanoparticles enhance oral supply of antitubercular bicyclic nitroimidazoles. ACS Biomater Sci Eng. 2021. https://doi.org/10.1021/acsbiomaterials.1c00807.
Selvarajan V, Obuobi S, Ee PLR. Silica nanoparticles—a flexible software for the therapy of bacterial infections. Entrance Chem. 2020;8:602.
Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S. Handbook of nanomaterials properties. Berlin: Springer; 2014.
Chen Y, Guo S, Zhao M, Zhang P, Xin Z, Tao J, Bai L. Amperometric DNA biosensor for Mycobacterium tuberculosis detection utilizing flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted sign amplification technique. Biosens Bioelectron. 2018;119:215–20.
Buya AB, Witika BA, Bapolisi AM, Mwila C, Mukubwa GK, Memvanga PB, Makoni PA, Nkanga CI. Utility of lipid-based nanocarriers for antitubercular drug supply: a evaluate. Pharmaceutics. 2021;13(12):2041.
Mehta S, Kaur G, Bhasin Okay. Entrapment of a number of anti-Tb medication in microemulsion system: quantitative evaluation, stability, and in vitro launch research. J Pharm Sci. 2010;99(4):1896–911.
Rajput A, Mandlik S, Pokharkar V. Nanocarrier-based approaches for the environment friendly supply of anti-tubercular medication and vaccines for administration of tuberculosis. Entrance Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.749945/full.
Eleleemy M, Amin BH, Nasr M, Sammour OA. A succinct evaluate on the therapeutic potential and supply programs of Eugenol. Arch Pharm Sci Ain Shams College. 2020;4(2):290–311.
Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI. Microemulsions: a novel method to enhanced drug supply. Current Patents Drug Supply Type. 2008;2(3):238–57. https://doi.org/10.2174/187221108786241679.
Sheikh BA, Bhat BA, Alshehri B, Mir RA, Mir WR, Parry ZA, Mir MA. Nano-drug supply programs: doable finish to the rising threats of tuberculosis. J Biomed Nanotechnol. 2021;17(12):2298–318.
Kompella UB, Kadam RS, Lee VH. Current advances in ophthalmic drug supply. Ther Deliv. 2010;1(3):435–56.
Raina N, Pahwa R, Bhattacharya J, Paul AK, Nissapatorn V, de Lourdes PM, Oliveira SM, Dolma KG, Rahmatullah M, Wilairatana P. Drug supply methods and biomedical significance of hydrogels: translational issues. Pharmaceutics. 2022;14(3):574.
Wan Y, Liu L, Yuan S, Solar J, Li Z. pH-responsive peptide supramolecular hydrogels with antibacterial exercise. Langmuir. 2017;33(13):3234–40.
Ahmad N, Pandey M, Mohamad N, Chen XY, Amin MCIM. Hydrogels for pulmonary drug supply. In: Dua Kamal, Hansbro Philip M, Wadhwa Ridhima, Haghi Mehra, Pont Lisa G, Williams Kylie A, editors. Concentrating on persistent inflammatory lung ailments utilizing superior drug supply programs. Amsterdam: Elsevier; 2020.
Guvendiren M, Molde J, Soares RM, Kohn J. Designing biomaterials for 3D printing. ACS Biomater Sci Eng. 2016;2(10):1679–93.
Zhao S, Zhu M, Zhang J, Zhang Y, Liu Z, Zhu Y, Zhang C. Three dimensionally printed mesoporous bioactive glass and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. J Mater Chem B. 2014;2(36):6106–18. https://doi.org/10.1039/c4tb00838c.
Malakar TK, Chaudhari VS, Dwivedy SK, Murty US, Banerjee S. 3D printed housing units for segregated compartmental supply of oral fixed-dose anti-tubercular medication adopting print and fill technique. Print Addit Manuf. 2021. https://doi.org/10.1089/3dp.2021.0037.
Sasikumar Okay, Ghosh AR, Dusthackeer A. Antimycobacterial potentials of quercetin and rutin towards Mycobacterium tuberculosis H37Rv. 3 Biotech. 2018;8(10):1–6.
Chaudhari VS, Malakar TK, Murty US, Banerjee S. Extruded filaments derived 3D printed medicated pores and skin patch to mitigate harmful pulmonary tuberculosis: design to supply. Knowledgeable Opin Drug Deliv. 2021;18(2):301–13.
Marcianes P, Negro S, Barcia E, Montejo C, Fernández-Carballido A. Potential energetic focusing on of gatifloxacin to macrophages via surface-modified PLGA microparticles destined to deal with tuberculosis. AAPS PharmSciTech. 2020;21(1):1–14.
Shah S, Cristopher D, Sharma S, Soniwala M, Chavda J. Inhalable linezolid loaded PLGA nanoparticles for therapy of tuberculosis: design, improvement and in vitro analysis. J Drug Deliv Sci Technol. 2020;60:102013.
Operti MC, Bernhardt A, Grimm S, Engel A, Figdor CG, Tagit O. PLGA-based nanomedicines manufacturing: applied sciences overview and challenges in industrial scale-up. Int J Pharm. 2021;605:120807.
Baranyai Z, Soria-Carrera H, Alleva M, Millán-Placer AC, Lucía A, Martín-Rapún R, Aínsa JA, de la Fuente JM. Nanotechnology-based focused drug supply: an rising software to beat tuberculosis. Adv Ther. 2021;4(1):2000113.
Roy A, Agnivesh PK, Sau S, Kumar S, Kalia NP. Tweaking host immune responses for novel therapeutic approaches towards Mycobacterium tuberculosis. Drug Discov Immediately. 2023. https://doi.org/10.1016/j.drudis.2023.103693.
Hamed A, Osman R, Al-Jamal KT, Holayel SM, Geneidi A-S. Enhanced antitubercular exercise, alveolar deposition and macrophages uptake of mannosylated secure nanoliposomes. J Drug Deliv Sci Technol. 2019;51:513–23.
Vieira AC, Chaves LL, Pinheiro M, Lima SAC, Ferreira D, Sarmento B, Reis S. Mannosylated stable lipid nanoparticles for the selective supply of rifampicin to macrophages. Artif Cells Nanomed Biotechnol. 2018;46(sup1):653–63.
Galdopórpora JM, Martinena C, Bernabeu E, Riedel J, Palmas L, Castangia I, Manca ML, Garcés M, Lázaro-Martinez J, Salgueiro MJ. Inhalable mannosylated rifampicin-curcumin co-loaded nanomicelles with enhanced in vitro antimicrobial efficacy for an optimized pulmonary tuberculosis remedy. Pharmaceutics. 2022;14(5):959.
Sarkar S, Dyett B, Lakic B, Ball AS, Yeo LY, White JF, Soni S, Drummond CJ, Conn CE. Cubosome lipid nanocarriers as a drug supply car for intracellular mycobacterium tuberculosis infections. ACS Appl Mater Interfaces. 2023;15(18):21819–29.
Worstell NC, Singla A, Saenkham P, Galbadage T, Sule P, Lee D, Mohr A, Kwon JS-I, Cirillo JD, Wu H-J. Hetero-multivalency of Pseudomonas aeruginosa lectin LecA binding to mannequin membranes. Sci Rep. 2018;8(1):1–11.
Siegel RA, Kirtane AR, Panyam J. Assessing the advantages of drug supply by nanocarriers: a partico/pharmacokinetic framework. IEEE Trans Biomed Eng. 2016;64(9):2176–85.
Garcia-Contreras L, Sethuraman V, Kazantseva M, Hickey A. Efficacy of mixed rifampicin formulations delivered by the pulmonary path to deal with tuberculosis within the guinea pig mannequin. Pharmaceutics. 2021;13(8):1309.
Sharma PR, Dravid AA, Kalapala YC, Gupta VK, Jeyasankar S, Goswami A, Agarwal R. Cationic inhalable particles for enhanced drug supply to M. tuberculosis contaminated macrophages. Biomater Adv. 2022;133:112612.
Gangadhar KN, Changsan V, Buatong W, Srichana T. Section conduct of rifampicin in cholesterol-based liquid crystals and polyethylene glycol. Eur J Pharm Sci. 2012;47(5):804–12.
Truzzi E, Capocefalo A, Meneghetti F, Maretti E, Mori M, Iannuccelli V, Domenici F, Castellano C, Leo E. Design and physicochemical characterization of novel hybrid SLN-liposome nanocarriers for the good co-delivery of two antitubercular medication. J Drug Deliv Sci Technol. 2022;70:103206.
Roy I, Vij N. Nanodelivery in airway ailments: challenges and therapeutic purposes. Nanomed Nanotechnol Biol Med. 2010;6(2):237–44.
Han C, Romero N, Fischer S, Dookran J, Berger A, Doiron AL. Current developments in the usage of nanoparticles for therapy of biofilms. Nanotechnol Rev. 2017;6(5):383–404.
Misra A, Hickey AJ, Rossi C, Borchard G, Terada H, Makino Okay, Fourie PB, Colombo P. Inhaled drug remedy for therapy of tuberculosis. Tuberculosis. 2011;91(1):71–81.
Pham D-D, Fattal E, Tsapis N. Pulmonary drug supply programs for tuberculosis therapy. Int J Pharm. 2015;478(2):517–29.
Tan ZM, Lai GP, Pandey M, Srichana T, Pichika MR, Gorain B, Bhattamishra SK, Choudhury H. Novel approaches for the therapy of pulmonary tuberculosis. Pharmaceutics. 2020;12(12):1196.
Ghosh S, Ghosh S, Sil PC. Function of nanostructures in improvising oral medication. Toxicol Rep. 2019;6:358–68.
Yang Z, Niu N, Lou C, Wang X, Wang C, Shi Z. Preparation, characterrization, and in-vitro cytotoxicity of nanoliposomes loaded with anti-tuberculous medication and TGF-β1 siRNA for enhancing spinal tuberculosis remedy. BMC Infect Dis. 2022. https://doi.org/10.1186/s12879-022-07791-8.
Jiang Z, Wei J, Peng N, Li Y. Genetic engineering of a phage-based supply system for endogenous III-A CRISPR-cas system towards mycobacterium tuberculosis. In: Tofazzal Islam M, Molla Kutubuddin Ali, editors. CRISPR-cas strategies. New York: Springer; 2021.
Dubey AK, Kumar Gupta V, Kujawska M, Orive G, Kim N-Y, Li C-Z, Kumar Mishra Y, Kaushik A. Exploring nano-enabled CRISPR-Cas-powered methods for environment friendly diagnostics and therapy of infectious ailments. J Nanostruct Chem. 2022. https://doi.org/10.1007/s40097-022-00472-7.
Babunovic GH, DeJesus MA, Bosch B, Chase MR, Barbier T, Dickey AK, Bryson BD, Rock JM, Fortune SM. CRISPR interference reveals that all-trans-retinoic acid promotes macrophage management of mycobacterium tuberculosis by limiting bacterial entry to ldl cholesterol and propionyl coenzyme A. MBio. 2022;13(1):e03683-e3621.
Verma M, Furin J, Langer R, Traverso G. Making the case: growing progressive adherence options for the therapy of tuberculosis. BMJ Glob Well being. 2019;4(1):e001323.
Furin J, Tommasi M, Garcia-Prats AJ. Drug-resistant tuberculosis: will grand guarantees fail kids and adolescents? Lancet Baby Adolesc Well being. 2018;2(4):237–8.
Harausz EP, Garcia-Prats AJ, Seddon JA, Schaaf HS, Hesseling AC, Achar J, Bernheimer J, Cruz AT, D’Ambrosio L, Detjen A. New and repurposed medication for pediatric multidrug-resistant tuberculosis Observe-based suggestions. Am J Respir Crit Care Med. 2017;195(10):1300–10.
Swindells S, Siccardi M, Barrett SE, Olsen DB, Grobler JA, Podany AT, Nuermberger E, Kim P, Barry C, Owen A. Lengthy-acting formulations for the therapy of latent tuberculous an infection: alternatives and challenges. Int J Tuberc Lung Dis. 2018;22(2):125–32.
Park EJ, Amatya S, Kim MS, Park JH, Seol E, Lee H, Shin Y-H, Na DH. Lengthy-acting injectable formulations of antipsychotic medication for the therapy of schizophrenia. Arch Pharmacal Res. 2013;36(6):651–9.
Kaushik A, Ammerman NC, Tyagi S, Saini V, Vervoort I, Lachau-Durand S, Nuermberger E, Andries Okay. Exercise of a long-acting injectable bedaquiline formulation in a paucibacillary mouse mannequin of latent tuberculosis an infection. Antimicrob Brokers Chemother. 2019;63(4):e00007-00019.
Diacon A, Donald P, Pym A, Grobusch M, Patientia R, Mahanyele R, Bantubani N, Narasimooloo R, De Marez T, Van Heeswijk R. Randomized pilot trial of eight weeks of bedaquiline (TMC207) therapy for multidrug-resistant tuberculosis: long-term end result, tolerability, and impact on emergence of drug resistance. Antimicrob Brokers Chemother. 2012;56(6):3271–6.
Rajoli RK, Podany AT, Moss DM, Swindells S, Flexner C, Owen A, Siccardi M. Modelling the long-acting administration of anti-tuberculosis brokers utilizing PBPK: a proof of idea research. Int J Tuberc Lung Dis. 2018;22(8):937–44.
Verma M, Vishwanath Okay, Eweje F, Roxhed N, Grant T, Castaneda M, Steiger C, Mazdiyasni H, Bensel T, Minahan D. A gastric resident drug supply system for extended gram-level dosing of tuberculosis therapy. Sci Transl Med. 2019;11(483):6267.
Adeleke OA, Fisher L, Moore IN, Nardone GA, Sher A. An extended-acting thermoresponsive injectable formulation of tin protoporphyrin sustains antitubercular efficacy in a murine an infection mannequin. ACS Pharmacol Transl Sci. 2020;4(1):276–87.
Sadeghi I, Byrne J, Shakur R, Langer R. Engineered drug supply units to deal with world well being challenges. J Management Launch. 2021;331:503–14.
Raza A, Sime FB, Cabot PJ, Maqbool F, Roberts JA, Falconer JR. Stable nanoparticles for oral antimicrobial drug supply: a evaluate. Drug Discov Immediately. 2019;24(3):858–66.
Singh H, Jindal S, Singh M, Sharma G, Kaur IP. Nano-formulation of rifampicin with enhanced bioavailability: improvement, characterization and in-vivo security. Int J Pharm. 2015;485(1–2):138–51.
Elbrink Okay, Van Hees S, Chamanza R, Roelant D, Loomans T, Holm R, Kiekens F. Utility of stable lipid nanoparticles as a long-term drug supply platform for intramuscular and subcutaneous administration: in vitro and in vivo analysis. Eur J Pharm Biopharm. 2021;163:158–70.
Pigrau-Serrallach C, Rodríguez-Pardo D. Bone and joint tuberculosis. Eur Backbone J. 2013;22(4):556–66.
Hua L, Qian H, Lei T, Liu W, He X, Zhang Y, Lei P, Hu Y. Anti-tuberculosis drug supply for tuberculous bone defects. Knowledgeable Opin Drug Deliv. 2021;18(12):1815–27.
Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 2014;10(5):2269–81.
Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Ma Y, Zhu Y, Zhang C. Results of practical teams on the construction, physicochemical and organic properties of mesoporous bioactive glass scaffolds. J Mater Chem B. 2015;3(8):1612–23.
Wu C, Chang J. Multifunctional mesoporous bioactive glasses for efficient supply of therapeutic ions and drug/progress elements. J Management Launch. 2014;193:282–95.
Miller SR, Heurtaux D, Baati T, Horcajada P, Grenèche J-M, Serre C. Biodegradable therapeutic MOFs for the supply of bioactive molecules. Chem Commun. 2010;46(25):4526–8.
Giménez-Marqués M, Hidalgo T, Serre C, Horcajada P. Nanostructured steel–natural frameworks and their bio-related purposes. Coord Chem Rev. 2016;307:342–60.
Semaan R, Traboulsi R, Kanj S. Major Mycobacterium tuberculosis complicated cutaneous an infection: report of two circumstances and literature evaluate. Int J Infect Dis. 2008;12(5):472–7.
van Staden D, Haynes RK, Viljoen JM. Adapting clofazimine for therapy of cutaneous tuberculosis through the use of self-double-emulsifying drug supply programs. Antibiotics. 2022;11(6):806.
Xu Y, Wu J, Liao S, Solar Z. Treating tuberculosis with excessive doses of anti-TB medication: mechanisms and outcomes. Ann Clin Microbiol Antimicrob. 2017;16(1):1–13.
Ammerman NC, Swanson RV, Bautista EM, Almeida DV, Saini V, Omansen TF, Guo H, Chang YS, Li S-Y, Tapley A. Impression of clofazimine dosing on therapy shortening of the first-line routine in a mouse mannequin of tuberculosis. Antimicrob Brokers Chemother. 2018;62(7):e00636-e618.
van Staden D, Haynes RK, Viljoen JM. Adapting clofazimine for therapy of cutaneous tuberculosis through the use of self-double-emulsifying drug supply programs. Antibiotics. 2022;11(6):806. https://doi.org/10.3390/antibiotics11060806.
Caon T, Campos CEM, Simões CMO, Silva MAS. Novel views within the tuberculosis therapy: administration of isoniazid by way of the pores and skin. Int J Pharm. 2015;494(1):463–70.
Basu S, Monira S, Modi RR, Choudhury N, Mohan N, Padhi TR, Balne PK, Sharma S, Panigrahi SR. Diploma, length, and causes of visible impairment in eyes affected with ocular tuberculosis. J Ophthalmic Inflam Infect. 2014;4(1):1–5.
Bennett JE, Dolin R, Blaser MJ: Mandell, douglas, and bennett’s ideas and apply of infectious ailments E-book: Elsevier Well being Sciences; 2019.
Agrawal R, Gunasekeran DV, Raje D, Agarwal A, Nguyen QD, Kon OM, Pavesio C, Gupta V. International variations and challenges with tubercular uveitis within the collaborative ocular tuberculosis research. Make investments Ophthalmol Vis Sci. 2018;59(10):4162–71.
Agrawal R, Ludi Z, Betzler BK, Testi I, Mahajan S, Rousellot A, Kempen JH, Smith JR, McCluskey P, Nguyen QD. The collaborative ocular tuberculosis research (COTS) calculator—a consensus-based determination software for initiating antitubercular remedy in ocular tuberculosis. Eye. 2022. https://doi.org/10.1038/s41433-022-02147-7.
Zhang Z, Liu J, Wan C, Liu P, Wan H, Guo Z, Tong J, Cao X. Profitable therapy of tuberculosis verrucosa cutis with fester as main manifestation with photodynamic remedy and anti-tubercular medication. Photodiagn Photodyn Ther. 2022;38:102763.
Patel U, Rathnayake Okay, Jani H, Jayawardana KW, Dhakal R, Duan L, Jayawardena SN. Close to-infrared responsive focused drug supply system that provide chemo-photothermal remedy towards bacterial an infection. Nano Choose. 2021;2(9):1750–69.
Liu Y, Lin A, Liu J, Chen X, Zhu X, Gong Y, Yuan G, Chen L, Liu J. Enzyme-responsive mesoporous ruthenium for mixed chemo-photothermal remedy of drug-resistant micro organism. ACS Appl Mater Interfaces. 2019;11(30):26590–606.
Sia JK, Georgieva M, Rengarajan J. Innate immune defenses in human tuberculosis: an summary of the interactions between Mycobacterium tuberculosis and innate immune cells. J Immunol Res. 2015. https://doi.org/10.1155/2015/747543.
Cadena AM, Flynn JL, Fortune SM. The significance of first impressions: early occasions in Mycobacterium tuberculosis an infection affect end result. MBio. 2016;7(2):e00342-e316.
Divangahi M, Aaby P, Khader SA, Barreiro LB, Bekkering S, Chavakis T, van Crevel R, Curtis N, DiNardo AR, Dominguez-Andres J. Skilled immunity, tolerance, priming and differentiation: distinct immunological processes. Nat Immunol. 2021;22(1):2–6.
Gong W, Wu X. Differential analysis of latent tuberculosis an infection and energetic tuberculosis: a key to a profitable tuberculosis management technique. Entrance Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.745592.
Khan N, Vidyarthi A, Javed S, Agrewala JN. Innate immunity holding the flanks till bolstered by adaptive immunity towards Mycobacterium tuberculosis an infection. Entrance Microbiol. 2016;7:328.
Mi J, Liang Y, Liang J, Gong W, Wang S, Zhang J, Li Z, Wu X. The analysis progress in immunotherapy of tuberculosis. Entrance Cell Infect Microbiol. 2021. https://doi.org/10.3389/fcimb.2021.763591.
Johnson B, Bekker LG, Ress S, Kaplan G. Recombinant interleukin 2 adjunctive remedy in multidrug-resistant tuberculosis. In: Chadwick Derek J, Cardew Gail, editors. Genetics and tuberculosis: novartis basis symposium 217. Hoboken: Wiley On-line Library; 1998.
Kim YG, Baltabekova AZ, Zhiyenbay EE, Aksambayeva AS, Shagyrova ZS, Khannanov R, Ramanculov EM, Shustov AV. Recombinant vaccinia virus-coded interferon inhibitor B18R: expression, refolding and a use in a mammalian expression system with a RNA-vector. PLoS ONE. 2017;12(12):e0189308.
Ma Y, Chen H-D, Wang Y, Wang Q, Li Y, Zhao Y, Zhang X-L. Interleukin 24 as a novel potential cytokine immunotherapy for the therapy of Mycobacterium tuberculosis an infection. Microbes Infect. 2011;13(12–13):1099–110.
Netea MG, Lewis EC, Azam T, Joosten LA, Jaekal J, Bae S-Y, Dinarello CA, Kim S-H. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proc Natl Acad Sci. 2008;105(9):3515–20.
Li W, Deng W, Xie J. The biology and position of interleukin-32 in tuberculosis. J Immunol Res. 2018. https://doi.org/10.1155/2018/1535194.
Teitelbaum R, Glatman-Freedman A, Chen B, Robbins JB, Unanue E, Casadevall A, Bloom BR. A mAb recognizing a floor antigen of Mycobacterium tuberculosis enhances host survival. Proc Natl Acad Sci. 1998;95(26):15688–93.
Hamasur B, Haile M, Pawlowski A, Schröder U, Källenius G, Svenson SB. A mycobacterial lipoarabinomannan particular monoclonal antibody and its F (ab′) 2 fragment extend survival of mice contaminated with Mycobacterium tuberculosis. Clin Exp Immunol. 2004;138(1):30–8.
AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative choice to anti-tuberculosis medication. Pharmacol Res. 2018;128:288–305.
Saeed AF, Wang R, Ling S, Wang S. Antibody engineering for pursuing a more healthy future. Entrance Microbiol. 2017;8:495.
Gutiérrez-Ortega A, Moreno DA, Ferrari SA, Espinosa-Andrews H, Ortíz EP, Milián-Suazo F, Alvarez AH. Excessive-yield manufacturing of main T-cell ESAT6-CFP10 fusion antigen of M. tuberculosis complicated using codon-optimized artificial gene. Int J Biol Macromol. 2021;171:82–8. https://doi.org/10.1016/j.ijbiomac.2020.12.179.
Bianchi L, Galli L, Moriondo M, Veneruso G, Becciolini L, Azzari C, Chiappini E, de Martino M. Interferon-gamma launch assay improves the analysis of tuberculosis in kids. Pediatr Infect Dis J. 2009;28(6):510–4.
Zhang X, Liu X-Y, Yang H, Chen J-N, Lin Y, Han S-Y, Cao Q, Zeng H-S, Ye J-W. A polyhydroxyalkanoates-based provider platform of bioactive substances for therapeutic purposes. Entrance Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.798724/full.
Saracino A, Scotto G, Fornabaio C, Martinelli D, Faleo G, Cibelli D, Tartaglia A, Di Tuwo R, Fazio V, Prato R. QuantiFERON®-TB gold in-tube take a look at (QFT-GIT) for the screening of latent tuberculosis in current immigrants to Italy. New Microbiol. 2009;32(4):369.
Patil TS, Deshpande AS. Revolutionary methods within the analysis and therapy of tuberculosis: a patent evaluate (2014–2017). Knowledgeable Opin Ther Pat. 2018;28(8):615–23.
Brigden G, Castro JL, Ditiu L, Grey G, Hanna D, Low M, Matsoso MP, Perry G, Spigelman M, Swaminathan S. Tuberculosis and antimicrobial resistance–new fashions of analysis and improvement wanted. Bull World Well being Organ. 2017;95(5):315–315.
Pool MP. The medicines patent pool publicizes first license for tuberculosis therapy. Geneva: UNITAID; 2017.
Bekale RB, Du Plessis S-M, Hsu N-J, Sharma JR, Sampson SL, Jacobs M, Meyer M, Morse GD, Dube A. Mycobacterium tuberculosis and interactions with the host immune system: alternatives for nanoparticle primarily based immunotherapeutics and vaccines. Pharm Res. 2019;36(1):1–15.
Verma N, Arora V, Awasthi R, Chan Y, Jha NK, Thapa Okay, Jawaid T, Kamal M, Gupta G, Liu G. Current developments, challenges and future prospects in superior drug supply programs within the administration of tuberculosis. J Drug Deliv Sci Technol. 2022. https://doi.org/10.1016/j.jddst.2022.103690.
ID93 + GLA-SE vaccine [https://classic.clinicaltrials.gov/ct2/results?cond=&term=ID93+%2B+GLA-SE+vaccine&cntry=&state=&city=&dist=%20cite%20link%20and%20add%20date]
[ad_2]