[ad_1]
Stubbins, A., Regulation, Ok. L., Muñoz, S. E., Bianchi, T. S. & Zhu, L. Plastics within the earth system. Science 373, 51–55 (2021).
Ross, P. S. et al. Pervasive distribution of polyester fibres within the Arctic Ocean is pushed by Atlantic inputs. Nat. Commun. 12, 106 (2021).
Aves, A. R. et al. First proof of microplastics in Antarctic snow. Cryosphere 16, 2127–2145 (2022).
Woodward, J., Li, J., Rothwell, J. & Hurley, R. Acute riverine microplastic contamination attributable to avoidable releases of untreated wastewater. Nat. Maintain. 4, 793–802 (2021).
Peng, X. et al. Microplastics contaminate the deepest a part of the world’s ocean. Geochem. Perspect. Lett. 9, 1–5 (2018).
Santos, R. G., Machovsky-Capuska, G. E. & Andrades, R. Plastic ingestion as an evolutionary lure: towards a holistic understanding. Science 373, 56–60 (2021).
MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The worldwide menace from plastic air pollution. Science 373, 61–65 (2021).
Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).
Vethaak, A. D. & Legler, J. Microplastics and human well being. Science 371, 672–674 (2021).
Wagner, S. & Reemtsma, T. Issues we all know and don’t find out about nanoplastic within the atmosphere. Nat. Nanotechnol. 14, 300–301 (2019).
Gerritse, J., Leslie, H. A., Caroline, A., Devriese, L. I. & Vethaak, A. D. Fragmentation of plastic objects in a laboratory seawater microcosm. Sci. Rep. 10, 10945 (2020).
Dawson, A. L. et al. Turning microplastics into nanoplastics via digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).
Wang, C., Zhao, J. & Xing, B. Environmental supply, destiny, and toxicity of microplastics. J. Hazard. Mater. 407, 124357 (2021).
Hewitt, D. P. & George, D. G. The inhabitants dynamics of Keratella cochlearis in a hypereutrophic tarn and the doable impression of predation by younger roach. Hydrobiologia 147, 221–227 (1987).
Jeong, C. B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation within the monogonont rotifer (Brachionus koreanus). Environ. Sci. Technol. 50, 8849–8857 (2016).
Baer, A., Langdon, C., Mills, S., Schulz, C. & Hamre, Ok. Particle dimension choice, intestine filling and evacuation charges of the rotifer Brachionus “Cayman” utilizing polystyrene latex beads. Aquaculture 282, 75–82 (2008).
Stelzer, C. P., Riss, S. & Stadler, P. Genome dimension evolution on the speciation stage: the cryptic species complicated Brachionus plicatilis (Rotifera). BMC Evol. Biol. 11, 90 (2011).
Papakostas, S. et al. Integrative taxonomy acknowledges evolutionary models regardless of widespread mitonuclear discordance: proof from a rotifer cryptic species complicated. Syst. Biol. 65, 508–524 (2016).
Gilbert, J. J. & Walsh, E. J. Brachionus calyciflorus is a species complicated: mating conduct and genetic differentiation amongst 4 geographically remoted strains. Hydrobiologia 546, 257–265 (2005).
Drago, C. & Weithoff, G. Variable health response of two rotifer species uncovered to microplastics particles: the position of meals amount and high quality. Toxics 9, 305 (2021).
Fournier, S. B. et al. Nanopolystyrene translocation and fetal deposition after acute lung publicity throughout late-stage being pregnant. Half. Fibre Toxicol. 17, 55 (2020).
Kleinow, W. & Wratil, H. On the construction and performance of the mastax of Brachionus plicatilis (Rotifera), a scanning electron microscope evaluation. Zoomorphology 116, 169–177 (1996).
Klusemann, J., Kleinow, W. & Peters, W. The arduous elements (trophi) of the rotifer mastax do include chitin: proof from research on Brachionus plicatilis. Histochemistry 94, 277–283 (1990).
Cornillac, A., Wurdak, E. & Clément, P. Biology of Rotifers (Springer, 1983).
Garvey, C. J. et al. Molecular-scale understanding of the embrittlement in polyethylene ocean particles. Environ. Sci. Technol. 54, 11173–11181 (2020).
Liu, Z. et al. Quantifying the dynamics of polystyrene microplastics UV-aging course of. Environ. Sci. Technol. Lett. 9, 50–56 (2022).
Huang, Z. et al. Affect of protein configuration on aggregation kinetics of nanoplastics in aquatic atmosphere. Water Res. 219, 118522 (2022).
Iyer, N. & Rao, T. Responses of the predatory rotifer Asplanchna intermedia to prey species differing in vulnerability: laboratory and subject research. Freshw. Biol. 36, 521–533 (1996).
Yuan, W., Liu, X., Wang, W., Di, M. & Wang, J. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicol. Environ. Saf. 170, 180–187 (2019).
Wang, J., Wu, J., Yu, Y., Wang, T. & Gong, C. The precise listing, quantitative distribution and alter of zooplankton within the season of spring and autumn in Poyang Lake. J. Lake Sci. 15, 345–352 (2003).
Gilbert, J. J. Meals niches of planktonic rotifers: diversification and implications. Limnol. Oceanogr. 67, 2218–2251 (2022).
Han, M. et al. Distribution of microplastics in floor water of the decrease Yellow River close to estuary. Sci. Whole Environ. 707, 135601 (2020).
Fan, Y. et al. Spatiotemporal dynamics of microplastics in an city river community space. Water Res. 212, 118116 (2022).
Janakiraman, A., Naveed, M. S. & Altaff, Ok. Affect of home sewage air pollution on rotifer abundance in Adyar estuary. Int. J. Environ. Sci. 3, 689–696 (2012).
Cai, H., Chen, M., Du, F., Matthews, S. & Shi, H. Separation and enrichment of nanoplastics in environmental water samples through ultracentrifugation. Water Res. 203, 117509 (2021).
Nigamatzyanova, L. & Fakhrullin, R. Darkish-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: a Caenorhabditis elegans research. Environ. Pollut. 271, 116337 (2021).
Stojicic, S., Zivkovic, S., Qian, W., Zhang, H. & Haapasalo, M. Tissue dissolution by sodium hypochlorite: impact of focus, temperature, agitation, and surfactant. J. Endod. 36, 1558–1562 (2010).
Chopinet, L., Formosa, C., Rols, M. P., Duval, R. E. & Dague, E. Imaging residing cells floor and quantifying its properties at excessive decision utilizing AFM in QI™ mode. Micron 48, 26–33 (2013).
de Vega, R. G. et al. Characterisation of microplastics and unicellular algae in seawater by focusing on carbon through single particle and single cell ICP-MS. Anal. Chim. Acta 1174, 338737 (2021).
Podar, M. et al. International prevalence and distribution of genes and microorganisms concerned in mercury methylation. Sci. Adv. 1, e1500675 (2015).
[ad_2]