[ad_1]
Kyriakou, G. et al. Remoted metallic atom geometries as a technique for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).
Chen, S. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 7, 387–405 (2021).
Smit, B. & Maesen, T. L. M. In direction of a molecular understanding of form selectivity. Nature 451, 671–678 (2008).
Cai, W. et al. Subsurface catalysis-mediated selectivity of dehydrogenation response. Sci. Adv. 4, eaar5418 (2018).
Li, H. et al. Synergetic interplay between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).
Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).
Cui, T.-L. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem. Int. Ed. 55, 9178–9182 (2016).
Wang, C. et al. Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 17, 714–720 (2022).
Liu, D., He, Q., Ding, S. & Track, L. Structural regulation and help coupling impact of single-atom catalysts for heterogeneous catalysis. Adv. Vitality Mater. 10, 2001482 (2020).
Ma, T. et al. Towards section and catalysis management: monitoring the formation of intermetallic nanoparticles at atomic scale. Chem 5, 1235–1247 (2019).
Guo, W., Wang, Z., Wang, X. & Wu, Y. Normal design idea for single-atom catalysts towards heterogeneous catalysis. Adv. Mater. 33, 2004287 (2021).
Somorjai, G. A. & Park, J. Y. Molecular elements of catalytic selectivity. Angew. Chem. Int. Ed. 47, 9212–9228 (2008).
Rahim, M. A. et al. Low-temperature liquid platinum catalyst. Nat. Chem. 14, 935–941 (2022).
Zuraiqi, Ok. et al. Liquid metals in catalysis for vitality purposes. Joule 4, 2290–2321 (2020).
Yan, H. et al. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371, 1257–1260 (2021).
Motagamwala, A. H., Almallahi, R., Wortman, J., Igenegbai, V. O. & Linic, S. Steady and selective catalysts for propane dehydrogenation working at thermodynamic restrict. Science 373, 217–222 (2021).
Tang, J. et al. Low temperature mechano-catalytic biofuel conversion utilizing liquid metals. Chem. Eng. J. 452, 139350 (2023).
Liu, H. et al. Stable–liquid section transition induced electrocatalytic switching from hydrogen evolution to extremely selective CO2 discount. Nat. Catal. 4, 202–211 (2021).
Studt, F. et al. Discovery of a Ni-Ga catalyst for carbon dioxide discount to methanol. Nat. Chem. 6, 320–324 (2014).
Ma, Z. et al. Permeable superelastic liquid-metal fibre mat allows biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).
Esrafilzadeh, D. et al. Room temperature CO2 discount to stable carbon species on liquid metals that includes atomically skinny ceria interfaces. Nat. Commun. 10, 865 (2019).
Tang, J. et al. Low temperature nano mechano-electrocatalytic CH4 conversion. ACS Nano 16, 8684–8693 (2022).
Abraham, M. J. et al. GROMACS: excessive efficiency molecular simulations by way of multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Tang, J. et al. Distinctive floor patterns rising throughout solidification of liquid metallic alloys. Nat. Nanotechnol. 16, 431–439 (2021).
Vanommeslaeghe, Ok. & MacKerell, A. D. Jr. Automation of the CHARMM Normal Pressure Discipline (CGenFF) I: bond notion and atom typing. J. Chem. Inf. Mannequin. 52, 3144–3154 (2012).
Vanommeslaeghe, Ok., Raman, E. P. & MacKerell, A. D. Jr. Automation of the CHARMM Normal Pressure Discipline (CGenFF) II: project of bonded parameters and partial atomic fees. J. Chem. Inf. Mannequin. 52, 3155–3168 (2012).
Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package deal for constructing preliminary configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader evaluation algorithm with out lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).
Humphrey, W., Dalke, A. & Schulten, Ok. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
Giorgino, T. Computing diffusion coefficients in macromolecular simulations: the Diffusion Coefficient Instrument for VMD. J. Open Supply Softw. 4, 1698 (2019).
[ad_2]