Home Nanotechnology Dimension and cost results of steel nanoclusters on antibacterial mechanisms | Journal of Nanobiotechnology

Dimension and cost results of steel nanoclusters on antibacterial mechanisms | Journal of Nanobiotechnology

0
Dimension and cost results of steel nanoclusters on antibacterial mechanisms | Journal of Nanobiotechnology

[ad_1]

  • Lu DE, Hung SH, Su YS, Lee WS. Evaluation of fungal and bacterial Co-infections in mortality instances amongst hospitalized sufferers with covid-19 in Taipei, Taiwan. J Fungi. 2022;8:91.

    Article 
    CAS 

    Google Scholar
     

  • Hsueh SC, Chao CM, Wang CY, Lai CC, Chen CH. Medical efficacy and security of cefiderocol within the therapy of acute bacterial infections: a scientific evaluation and meta-analysis of randomised managed trials. J Glob Antimicrob Resist. 2021;24:376–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu HY, Chang PH, Huang YS, Tsai CS, Chen KY, Lin IF, Hsih WH, Tsai WL, Chen JA, Yang TL, Lee CY, Ho TS, Wang HW, Huang SF, Wu AYJ, Chen HJ, Chen YC, Chen WC, Tseng CH, Lin PC, Yang CH, Hong PL, Lee SSJ, Chen YS, Liu YC, Wang FD, Chan YJ, Chang FY, Chang HT, Chen YC, Chen YH, Cheng MF, Chi H, Chiu CH, Ho MW, Hsieh SM, Hsueh PR, Huang CH, Hung CC, Hwang KP, Kao KC, Ko WC, Kuo CF, Lai CH, Lee NY, Lee SJ, Lin HH, Lin YT, Liu CC, Liu PY, Lu PL, Lu CY, Sheng WH, Tang HJ, Tsai HC, Wu TS, Yang CJ. Suggestions and tips for the analysis and administration of coronavirus disease-19 (covid-19) related bacterial and fungal infections in Taiwan. J Microbiol Immunol Infect. 2023;56:207–35.

    Article 
    PubMed 

    Google Scholar
     

  • Hsu TW, Chu CS, Tsai SJ, Bai YM, Su TP, Chen TJ, Chen MH, Liang CS. Danger of main psychological dysfunction after extreme bacterial infections in youngsters and adolescents: a nationwide longitudinal research. Neuropsychobiology. 2022;81:539–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deusenbery C, Wang Y, Shukla A. Current improvements in bacterial an infection detection and therapy. ACS Infect Dis. 2021;7:695–720.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reygaert WC. An outline of the antimicrobial resistance mechanisms of micro organism. AIMS Microbiol. 2018;4:482–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh TK, Jean SS, Lee YL, Lu MC, Ko WC, Lin HJ, Liu PY, Hsueh PR. Bacteriophages and phage-delivered crispr-cas system as antibacterial remedy. Int J Antimicrob Brokers. 2022;59:106475.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen HT, Ho TL, Pratomo A, Ilsan NA, Huang TW, Chen CH, Chuang EY. Enzymatically triggered graphene oxide launched from multifunctional carriers boosts anti-pathogenic properties for promising wound-healing purposes. Mater Sci Eng C. 2021;128:112265.

    Article 
    CAS 

    Google Scholar
     

  • Tsai WC, Zhuang ZJ, Lin CY, Chen WJ. Novel antimicrobial peptides with promising exercise towards multidrug resistant salmonella enterica serovar choleraesuis and its stress response mechanism. J Appl Microbiol. 2016;121:952–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tseng TS, Tu IF, Chen HT, Lin LC, Tsai KC, Wu SH, Chen C. Protein-DNA complex-guided discovery of the antibacterial lead e1 for restoring the susceptibility of: Klebsiella pneumoniae to polymyxin b by concentrating on the response regulator pmra. Chem Commun. 2018;54:6372–5.

    Article 
    CAS 

    Google Scholar
     

  • Miller SI. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. mBio. 2016;7:e01541-01516.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsueh PR, Huang HC, Younger TG, Su CY, Liu CS, Yen MY. Micro organism killing nanotechnology bio-kil successfully reduces bacterial burden in intensive care items. Eur J Clin Microbiol. 2014;33:591–7.

    Article 
    CAS 

    Google Scholar
     

  • Lee WS, Hsieh TC, Shiau JC, Ou TY, Chen FL, Liu YH, Yen MY, Hsueh PR. Bio-kil, a nano-based disinfectant, reduces environmental bacterial burden and multidrug-resistant organisms in intensive care items. J Microbiol Immunol Infect. 2017;50:737–46.

    Article 
    PubMed 

    Google Scholar
     

  • Nazzal S, Chen CP, Tsai T. Nanotechnology in antimicrobial photodynamic inactivation. J Meals Drug Anal. 2011;19:383–95+538.

    CAS 

    Google Scholar
     

  • Chan WP, Huang KC, Bai MY. Silk fibroin protein-based nonwoven mats incorporating baicalein chinese language natural extract: preparation, characterizations, and in vivo analysis. J Biomed Mater Res B Appl Biomater. 2017;105:420–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okoro G, Husain S, Saukani M, Mutalik C, Yougbaré S, Hsiao Y-C, Kuo T-R. Rising traits in nanomaterials for photosynthetic biohybrid programs. ACS Mater Lett. 2023;5:95–115.

    Article 
    CAS 

    Google Scholar
     

  • Mutalik C, Okoro G, Chou H-L, Lin IH, Yougbaré S, Chang C-C, Kuo T-R. Part-dependent 1T/2H-MoS2 nanosheets for efficient photothermal killing of micro organism. ACS Maintain Chem Eng. 2022;10:8949–57.

    Article 
    CAS 

    Google Scholar
     

  • Mutalik C, Okoro G, Krisnawati DI, Jazidie A, Rahmawati EQ, Rahayu D, Hsu WT, Kuo TR. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial actions. J Colloid Interface Sci. 2022;607:1825–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mutalik C, Lin I-H, Krisnawati DI, Khaerunnisa S, Khafid M, Widodo Hsiao Y-C, Kuo T-R. Antibacterial pathways in transition metal-based nanocomposites: a mechanistic overview. Int J Nanomed. 2022;17:6821–42.

    Article 
    CAS 

    Google Scholar
     

  • Yougbaré S, Mutalik C, Chung P-F, Krisnawati DI, Rinawati F, Irawan H, Kristanto H, Kuo T-R. Gold nanorod-decorated metallic MoS2 nanosheets for synergistic photothermal and photodynamic antibacterial remedy. Nanomaterials. 2021;11:3064.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutalik C, Krisnawati DI, Patil SB, Khafid M, Atmojo DS, Santoso P, Lu SC, Wang DY, Kuo SR. Part-dependent MoS2 nanoflowers for light-driven antibacterial utility. ACS Maintain Chem Eng. 2021;9:7904–12.

    Article 
    CAS 

    Google Scholar
     

  • Yougbaré S, Chou H-L, Yang C-H, Krisnawati DI, Jazidie A, Nuh M, Kuo T-R. Aspect-dependent gold nanocrystals for efficient photothermal killing of micro organism. J Hazard Mater. 2021;407:124617.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng Y, Wei M, Wu H, Li F, Ling D. Antibacterial steel nanoclusters. J Nanobiotechnology. 2022;20:328.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yougbare S, Mutalik C, Okoro G, Lin IH, Krisnawati DI, Jazidie A, Nuh M, Chang CC, Kuo TR. Rising traits in nanomaterials for antibacterial purposes. Int J Nanomed. 2021;16:5831–67.

    Article 

    Google Scholar
     

  • Yougbare S, Mutalik C, Krisnawati DI, Kristanto H, Jazidie A, Nuh M, Cheng TM, Kuo TR. Nanomaterials for the photothermal killing of micro organism. Nanomaterials. 2020;10:1123.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutalik C, Wang DY, Krisnawati DI, Jazidie A, Yougbare S, Kuo TR. Mild-activated heterostructured nanomaterials for antibacterial purposes. Nanomaterials. 2020;10:643.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang T-Okay, Cheng T-M, Chu H-L, Tan S-H, Kuo J-C, Hsu P-H, Su C-Y, Chen H-M, Lee C-M, Kuo T-R. Metabolic mechanism investigation of antibacterial lively cysteine-conjugated gold nanoclusters in escherichia coli. ACS Maintain Chem Eng. 2019;7:15479–86.

    Article 
    CAS 

    Google Scholar
     

  • Yougbare S, Chang T-Okay, Tan S-H, Kuo J-C, Hsu P-H, Su C-Y, Kuo T-R. Antimicrobial gold nanoclusters: Current developments and future views. Int J Mol Sci. 2019;20:2924.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur N, Aditya RN, Singh A, Kuo TR. Biomedical purposes for gold nanoclusters: current developments and future views. Nanoscale Res Lett. 2018;13:302.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nain A, Tseng Y-T, Wei S-C, Periasamy AP, Huang C-C, Tseng F-G, Chang H-T. Capping 1,3-propanedithiol to spice up the antibacterial exercise of protein-templated copper nanoclusters. J Hazard Mater. 2020;389:121821.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan X, Setyawati MI, Leong DT, Xie J. Ultrasmall Ag+-rich nanoclusters as extremely environment friendly nanoreservoirs for bacterial killing. Nano Res. 2014;7:301–7.

    Article 
    CAS 

    Google Scholar
     

  • Cheng TM, Chu HL, Lee YC, Wang DY, Chang CC, Chung KL, Yen HC, Hsiao CW, Pan XY, Kuo TR, Chen CC. Quantitative evaluation of glucose metabolic cleavage in glucose transporters overexpressed most cancers cells by target-specific fluorescent gold nanoclusters. Anal Chem. 2018;90:3974–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells however don’t trigger acute cytotoxicity. Small. 2005;1:325–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molaabasi F, Hosseinkhani S, Moosavi-Movahedi AA, Shamsipur M. Hydrogen peroxide delicate hemoglobin-capped gold nanoclusters as a fluorescence enhancing sensor for the label-free detection of glucose. RSC Adv. 2015;5:33123–35.

    Article 
    CAS 

    Google Scholar
     

  • Choi O, Hu Z. Dimension dependent and reactive oxygen species associated nanosilver toxicity to nitrifying micro organism. Environ Sci Technol. 2008;42:4583–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Floor charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45:283–7.

    Article 
    PubMed 

    Google Scholar
     

  • Pal S, Tak YK, Music JM. Does the antibacterial exercise of silver nanoparticles rely upon the form of the nanoparticle? A research of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Hu C, Shao L. The antimicrobial exercise of nanoparticles: current scenario and prospects for the long run. Int J Nanomed. 2017;12:1227–49.

    Article 
    CAS 

    Google Scholar
     

  • Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall coinage steel nanoclusters as promising theranostic probes for biomedical purposes. J Am Chem Soc. 2023;145:11879–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilcoxon JP, Abrams BL. Synthesis, construction and properties of steel nanoclusters. Chem Soc Rev. 2006;35:1162–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antoine R, Broyer M, Dugourd P. Metallic nanoclusters: From elementary elements to digital properties and optical purposes. Sci Technol Adv Mater. 2023;24:2222546.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mariscal M, Oviedo O, Leiva E. Metallic clusters and nanoalloys: From modeling to purposes. New York: Springer New York; 2013.

    E-book 

    Google Scholar
     

  • Sahoo Okay, Gazi TR, Roy S, Chakraborty I. Nanohybrids of atomically exact steel nanoclusters. Commun Chem. 2023;6:157.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng Y, Havenridge S, Gharib M, Baksi A, Weerawardene Okay, Ziefuss AR, Strelow C, Rehbock C, Mews A, Barcikowski S, Kappes MM, Parak WJ, Aikens CM, Chakraborty I. Impression of ligands on structural and optical properties of Ag(29) nanoclusters. J Am Chem Soc. 2021;143:9405–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Du X, Liu Z, Li Y, Shao Y, Jin R. Dimension results of atomically exact gold nanoclusters in catalysis. Summary Chem. 2023;1:14–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y-M, Hu J, Zhu M. Confining atomically exact nanoclusters in steel–natural frameworks for superior catalysis. Coord Chem Rev. 2023;495:215364.

    Article 
    CAS 

    Google Scholar
     

  • Shan H, Shi J, Chen T, Cao Y, Yao Q, An H, Yang Z, Wu Z, Jiang Z, Xie J. Modulating catalytic exercise and stability of atomically exact gold nanoclusters as peroxidase mimics through ligand engineering. ACS Nano. 2023;17:2368–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goswami N, Yao Q, Luo Z, Li J, Chen T, Xie J. Luminescent steel nanoclusters with aggregation-induced emission. J Phys Chem Lett. 2016;7:962–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aires A, Llarena I, Moller M, Castro-Smirnov J, Cabanillas-Gonzalez J, Cortajarena AL. A easy method to design proteins for the sustainable synthesis of steel nanoclusters. Angew Chem Int Ed Engl. 2019;58:6214–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao P, Chang X, Zhang D, Cai Y, Chen G, Wang H, Wang T. Synergistic integration of steel nanoclusters and biomolecules as hybrid programs for therapeutic purposes. Acta Pharm Sin B. 2021;11:1175–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Yang F, Zhang C, He X, Jin R. Metallic nanoclusters as biomaterials for bioapplications: atomic precision as the subsequent aim. ACS Mater Lett. 2022;4:1279–96.

    Article 
    CAS 

    Google Scholar
     

  • Ebina A, Hossain S, Horihata H, Ozaki S, Kato S, Kawawaki T, Negishi Y. One-, two-, and three-dimensional self-assembly of atomically exact steel nanoclusters. Nanomaterials. 2020;10:1105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolay S, Bain D, Maity S, Devi A, Patra A, Antoine R. Self-assembled steel nanoclusters: Driving forces and structural correlation with optical properties. Nanomaterials. 2022;12:544.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Lin X, Shu T, Su L, Liang F, Zhang X. Self-assembly of steel nanoclusters for aggregation-induced emission. Int J Mol Sci. 1891;2019:20.


    Google Scholar
     

  • Grassian VH. When dimension actually issues: size-dependent properties and floor chemistry of steel and steel oxide nanoparticles in fuel and liquid section environments. J Phys Chem C. 2008;112:18303–13.

    Article 
    CAS 

    Google Scholar
     

  • Slavin YN, Asnis J, Häfeli UO, Bach H. Metallic nanoparticles: understanding the mechanisms behind antibacterial exercise. J Nanobiotechnology. 2017;15:65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang X, Du B, Huang Y, Zheng J. Ultrasmall noble steel nanoparticles: breakthroughs and biomedical implications. Nano At present. 2018;21:106–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang YH, Lin JC, Chen YC, Kuo TR, Wang DY. Facile synthesis of two-dimensional ruddlesden-popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Res Lett. 2018;13:247.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo T-R, Lee Y-C, Chou H-L, Wei C-Y, Wen C-Y, Chang Y-H, Pan X-Y, Wang D-Y. Plasmon-enhanced hydrogen evolution on particular side of silver nanocrystals. Chem Mater. 2019;31:3722–8.

    Article 
    CAS 

    Google Scholar
     

  • Zheng Okay, Setyawati MI, Leong DT, Xie J. Overcoming bacterial bodily defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact Mater. 2021;6:941–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Díez I, Ras RH. Fluorescent silver nanoclusters. Nanoscale. 2011;3:1963–70.

    Article 
    PubMed 

    Google Scholar
     

  • Hoseinzadeh E, Makhdoumi P, Taha P, Stelling J, Hossini H, Kamal M, Ashraf G. A evaluation on nano-antimicrobials: Metallic nanoparticles, strategies and mechanisms. Curr Drug Metab. 2016;18:120–8.

    Article 

    Google Scholar
     

  • Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by superior modification applied sciences. Int J Nanomedicine. 2018;13:3311–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karakoti AS, Hench LL, Seal S. The potential toxicity of nanomaterials—the position of surfaces. JOM. 2006;58:77–82.

    Article 
    CAS 

    Google Scholar
     

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical perception of the cytotoxicity mechanism. Environ Sci Technol. 2006;40:6151–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galdiero S, Falanga A, Cantisani M, Tarallo R, Della Pepa ME, D’Oriano V, Galdiero M. Microbe-host interactions: Construction and position of gram-negative bacterial porins. Curr Protein Pept Sci. 2012;13:843–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vergalli J, Bodrenko IV, Masi M, Moynié L, Acosta-Gutiérrez S, Naismith JH, Davin-Regli A, Ceccarelli M, van den Berg B, Winterhalter M, Pagès JM. Porins and small-molecule translocation throughout the outer membrane of gram-negative micro organism. Nat Rev Microbiol. 2020;18:164–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Besnard M, Martinac B, Ghazi A. Voltage-dependent porin-like ion channels within the archaeon haloferax volcanii. J Biol Chem. 1997;272:992–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prajapati JD, Kleinekathöfer U, Winterhalter M. Find out how to enter a bacterium: bacterial porins and the permeation of antibiotics. Chem Rev. 2021;121:5158–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winterhalter M. Antibiotic uptake via porins situated within the outer membrane of gram-negative micro organism. Knowledgeable Opin. 2021;18:449–57.

    CAS 

    Google Scholar
     

  • Salton MRJ, Kim KS, Construction. In Medical microbiology, Baron S, (Ed). College of Texas Medical Department at Galveston Copyright © 1996, The College of Texas Medical Department at Galveston. Galveston (TX), 1996.

  • Fabio Bagnoli RR. Protein and sugar export and meeting in gram-positive micro organism. 1st ed. Cham: Springer Cham; 2017. p. X, 337.

    E-book 

    Google Scholar
     

  • Prajapati JD, Kleinekathofer U, Winterhalter M. Find out how to enter a bacterium: bacterial porins and the permeation of antibiotics. Chem Rev. 2021;121:5158–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trias J, Benz R. Characterization of the channel fashioned by the mycobacterial porin in lipid bilayer membranes. Demonstration of voltage gating and of destructive level fees on the channel mouth. J Biol Chem. 1993;268:6234–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Malkmes MJ, Jiang C, Wang P, Zhu L, Zhang H, Zhang Y, Huang H, Jiang L. Antibacterial mechanism and transcriptome evaluation of ultra-small gold nanoclusters as a substitute of dangerous antibiotics towards gram-negative micro organism. J Hazard Mater. 2021;416:126236.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin R. Atomically exact steel nanoclusters: Steady sizes and optical properties. Nanoscale. 2015;7:1549–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seil JT, Webster TJ. Antimicrobial purposes of nanotechnology: strategies and literature. Int J Nanomed. 2012;7:2767–81.

    CAS 

    Google Scholar
     

  • Zheng Okay, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11:6904–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye Z, Zhu H, Zhang S, Li J, Wang J, Wang E. Extremely environment friendly nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. J Mater Chem B. 2021;9:307–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Ren J, Qu X. Catalytically lively nanomaterials: a promising candidate for synthetic enzymes. Acc Chem Res. 2014;47:1097–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao L, Yan X. Nanozymes: an rising subject bridging nanotechnology and biology. Sci China Life Sci. 2016;59:400–2.

    Article 
    PubMed 

    Google Scholar
     

  • Wei H, Wang E. Nanomaterials with enzyme-like traits (nanozymes): next-generation synthetic enzymes. Chem Soc Rev. 2013;42:6060–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuo TR, Chen WT, Liao HJ, Yang YH, Yen HC, Liao TW, Wen CY, Lee YC, Chen CC, Wang DY. Enhancing hydrogen evolution exercise of earth-abundant cobalt-doped iron pyrite catalysts by floor modification with phosphide. Small. 2017;13:1603356.

    Article 

    Google Scholar
     

  • Li C-H, Kuo T-R, Su H-J, Lai W-Y, Yang P-C, Chen J-S, Wang D-Y, Wu Y-C, Chen C-C. Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Sci Rep. 2015;5:15675.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo T-R, Liao H-J, Chen Y-T, Wei C-Y, Chang C-C, Chen Y-C, Chang Y-H, Lin J-C, Lee Y-C, Wen C-Y. Prolonged seen to near-infrared harvesting of earth-abundant FeS2-TiO2 heterostructures for extremely lively photocatalytic hydrogen evolution. Inexperienced Chem. 2018;20:1640–7.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Li S, Liu H, Lengthy W, Zhang X-D. Enzyme-like properties of gold clusters for biomedical utility. Entrance Chem. 2020;8:219.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou C, Wang Q, Jiang J, Gao L. Nanozybiotics: Nanozyme-based antibacterials towards bacterial resistance. Antibiotics. 2022;11:390.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alizadeh N, Salimi A. Multienzymes exercise of metals and steel oxide nanomaterials: purposes from biotechnology to drugs and environmental engineering. J Nanobiotechnology. 2021;19:26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav SV, Rathod VK. Oxidase-like exercise of magnetically separable nano ceria for catechol detection. SN Appl Sci. 2019;1:1071.

    Article 
    CAS 

    Google Scholar
     

  • Tonoyan L, Fleming GTA, Mc Cay PH, Friel R, O’Flaherty V. Antibacterial potential of an antimicrobial agent impressed by peroxidase-catalyzed programs. Entrance Microbiol. 2017;8:680.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X. Mechanisms of oxidase and superoxide dismutation-like actions of gold, silver, platinum, and palladium, and their alloys: a common strategy to the activation of molecular oxygen. J Am Chem Soc. 2015;137:15882–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Liu W, Qin Z, Chen Y, Jiang H, Wang X. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjugate Chem. 2018;29:3094–103.

    Article 
    CAS 

    Google Scholar
     

  • Shaikh S, Nazam N, Rizvi SMD, Ahmad Okay, Baig MH, Lee EJ, Choi I. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci. 2019;20:2468.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L. The interplay of micro organism with engineered nanostructured polymeric supplies: a evaluation. Sci World J. 2014;2014:410423.

    Article 

    Google Scholar
     

  • Zhang X, Ma G, Wei W. Simulation of nanoparticles interacting with a cell membrane: probing the structural foundation and potential biomedical utility. NPG Asia Mater. 2021;13:52.

    Article 
    CAS 

    Google Scholar
     

  • Gupta R, Rai B. Impact of dimension and floor cost of gold nanoparticles on their pores and skin permeability: a molecular dynamics research. Sci Rep. 2017;7:45292.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue T, Zhang X. Cooperative impact in receptor-mediated endocytosis of a number of nanoparticles. ACS Nano. 2012;6:3196–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Ren L, Solar L, Bai X, Zhuang G, Cao B, Hu G, Zheng N, Liu S. Amphiphilic silver nanoclusters present lively nano–bio interplay with compelling antibacterial exercise towards multidrug-resistant micro organism. NPG Asia Mater. 2020;12:56.

    Article 

    Google Scholar
     

  • Simon AT, Dutta D, Chattopadhyay A, Ghosh SS. Copper nanocluster-doped luminescent hydroxyapatite nanoparticles for antibacterial and antibiofilm purposes. ACS Omega. 2019;4:4697–706.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu H, Li J, Wang J, Wang E. Lighting up the gold nanoclusters through host–visitor recognition for high-efficiency antibacterial efficiency and imaging. ACS Appl Mater Interfaces. 2019;11:36831–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang B, Chen J, Cao Y, Chai OJH, Xie J. Ligand design in ligand-protected gold nanoclusters. Small. 2021;17:2004381.

    Article 
    CAS 

    Google Scholar
     

  • Truttmann V, Herzig C, Illes I, Limbeck A, Pittenauer E, Stöger-Pollach M, Allmaier G, Bürgi T, Barrabés N, Rupprechter G. Ligand engineering of immobilized nanoclusters on surfaces: Ligand alternate reactions with supported au11(pph3)7br3. Nanoscale. 2020;12:12809–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Y, Feng G, Moraru CI. Micro- and nanotopography delicate bacterial attachment mechanisms: a evaluation. Entrance Microbiol. 2019;10:191.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kendall Okay, Van der Roberts AD. waals forces influencing adhesion of cells. Philos Trans R Soc B Biol Sci. 2015;370:20140078.

    Article 
    CAS 

    Google Scholar
     

  • Goulter RM, Light IR, Dykes GA. Points in figuring out components influencing bacterial attachment: a evaluation utilizing the attachment of Escherichia coli to abiotic surfaces for example. Lett Appl Microbiol. 2009;49:1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB. Bacterial adhesion: a physicochemical method. Microb Ecol. 1989;17:1–15.

    Article 
    PubMed 

    Google Scholar
     

  • Sharma S, Conrad JC. Attachment from circulation of Escherichia coli micro organism onto silanized glass substrates. Langmuir. 2014;30:11147–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang Z, Li Q, Jia Y, Yan W, Qi J, Guo Y, Hu F, Zhou D, Jiang X. Controlling the pyridinium–zwitterionic ligand ratio on atomically exact gold nanoclusters permitting for eradicating gram-positive drug-resistant micro organism and retaining biocompatibility. Chem Sci. 2021;12:14871–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed ZF, Edyvean RGJ, Pourzolfaghar H, Kasim N. Modeling of the van der Waals forces in the course of the adhesion of capsule-shaped micro organism to flat surfaces. Biomimetics. 2021;6:5.

    Article 

    Google Scholar
     

  • Zheng Okay, Setyawati MI, Leong DT, Xie J. Floor ligand chemistry of gold nanoclusters determines their antimicrobial means. Chem Mater. 2018;30:2800–8.

    Article 
    CAS 

    Google Scholar
     

  • Tang M, Zhang J, Yang C, Zheng Y, Jiang H. Gold nanoclusters for bacterial detection and an infection remedy. Entrance Chem. 2020;8:181.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie Y, Liu Y, Yang J, Liu Y, Hu F, Zhu Okay, Jiang X. Gold nanoclusters for concentrating on methicillin-resistant staphylococcus aureus in vivo. Angew Chem Int Ed. 2018;57:3958–62.

    Article 
    CAS 

    Google Scholar
     

  • Meng J, Hu Z, He M, Wang J, Chen X. Gold nanocluster floor ligand alternate: an oxidative stress amplifier for combating multidrug resistance bacterial an infection. J Colloid Interface Sci. 2021;602:846–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Z, Liu S, Chen N, Luo M, Wu J, Zheng Y. Gold nanoclusters deal with intracellular bacterial infections: eliminating phagocytic pathogens and regulating mobile immune response. Colloids Surf B. 2021;205:111899.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Zhen J, Tian Q, Shen C, Zhang L, Yang Okay, Shang L. One step synthesis of positively charged gold nanoclusters as efficient antimicrobial nanoagents towards multidrug-resistant micro organism and biofilms. J Colloid Interface Sci. 2020;569:235–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huma Z-E, Gupta A, Javed I, Das R, Hussain SZ, Mumtaz S, Hussain I, Rotello VM. Cationic silver nanoclusters as potent antimicrobials towards multidrug-resistant micro organism. ACS Omega. 2018;3:16721–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fei X, Ma X, Fang G, Chong Y, Tian X, Ge C. Antimicrobial peptide-templated silver nanoclusters with membrane exercise for enhanced bacterial killing. J Nanosci Nanotechnol. 2020;20:1425–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Li S, Bai Q, Sui N, Zhu Z. Gold nanoclusters embellished amine-functionalized graphene oxide nanosheets for seize, oxidative stress, and photothermal destruction of micro organism. Colloids Surf B. 2020;196:111313.

    Article 
    CAS 

    Google Scholar
     

  • Pranantyo D, Liu P, Zhong W, Kang E-T, Chan-Park MB. Antimicrobial peptide-reduced gold nanoclusters with charge-reversal moieties for bacterial concentrating on and imaging. Biomacromol. 2019;20:2922–33.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Fu T, Li B, Yan P, Wu Y. Riboflavin-protected ultrasmall silver nanoclusters with enhanced antibacterial exercise and the mechanisms. RSC Adv. 2019;9:13275–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Liu L, Li S, Kang Q, Zhang R, Zhu Z. Self-assembled nanogels of luminescent thiolated silver nanoclusters and chitosan as bactericidal agent and bacterial sensor. Mater Sci Eng C. 2021;118:111520.

    Article 
    CAS 

    Google Scholar
     

  • Xie Y, Zhang Q, Zheng W, Jiang X. Small molecule-capped gold nanoclusters for curing pores and skin infections. ACS Appl Mater Interfaces. 2021;13:35306–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Okay, Xie J. Composition-dependent antimicrobial means of full-spectrum auxag25–x alloy nanoclusters. ACS Nano. 2020;14:11533–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Okay, Li Okay, Chang T-H, Xie J, Chen P-Y. Synergistic antimicrobial functionality of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv Funct Mater. 2019;29:1904603.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Li X, Liu L, Bai Q, Sui N, Zhu Z. Self-assembled ultrasmall silver nanoclusters on liposome for topical antimicrobial supply. Colloids Surf B. 2021;200:111618.

    Article 
    CAS 

    Google Scholar
     

  • Yang H, Cai R, Zhang Y, Chen Y, Gu B. Gold nanoclusters as an antibacterial different towards clostridium difficile. Int J Nanomed. 2020;15:6401.

    Article 
    CAS 

    Google Scholar
     

  • Wu X, Chen Y, Zhang Y, Shan Y, Peng Z, Gu B, Yang H. Au nanoclusters ameliorate Shigella infectious colitis by inducing oxidative stress. Int J Nanomed. 2021;16:4545–57.

    Article 

    Google Scholar
     

  • Kuo J-C, Tan S-H, Hsiao Y-C, Mutalik C, Chen H-M, Yougbaré S, Kuo T-R. Unveiling the antibacterial mechanism of gold nanoclusters through in situ transmission electron microscopy. ACS Maintain Chem Eng. 2022;10:464–71.

    Article 
    CAS 

    Google Scholar
     

  • Jin J-C, Wu X-J, Xu J, Wang B-B, Jiang F-L, Liu Y. Ultrasmall silver nanoclusters: extremely environment friendly antibacterial exercise and their mechanisms. Biomater Sci. 2017;5:247–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Okay, Setyawati MI, Leong DT, Xie J. Observing antimicrobial course of with traceable gold nanoclusters. Nano Res. 2021;14:1026–33.

    Article 
    CAS 

    Google Scholar
     

  • Zheng Okay, Li S, Jing L, Chen P-Y, Xie J. Synergistic antimicrobial titanium carbide (mxene) conjugated with gold nanoclusters. Adv Healthc Mater. 2020;9:2001007.

    Article 
    CAS 

    Google Scholar
     

  • Sangsuwan A, Kawasaki H, Matsumura Y, Iwasaki Y. Antimicrobial silver nanoclusters bearing biocompatible phosphorylcholine-based zwitterionic safety. Bioconjugate Chem. 2016;27:2527–33.

    Article 
    CAS 

    Google Scholar
     

  • Hwang GB, Huang H, Wu G, Shin J, Kafizas A, Karu Okay, Toit HD, Alotaibi AM, Mohammad-Hadi L, Allan E, MacRobert AJ, Gavriilidis A, Parkin IP. Photobactericidal exercise activated by thiolated gold nanoclusters at low flux ranges of white gentle. Nat Commun. 2020;11:1207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biswas S, Das S, Negishi Y. Progress and prospects within the design of useful atomically-precise Ag(i)-thiolate nanoclusters and their meeting approaches. Coord Chem Rev. 2023. https://doi.org/10.1016/j.ccr.2023.215255.

    Article 

    Google Scholar
     

  • Zhang L, Wang E. Metallic nanoclusters: New fluorescent probes for sensors and bioimaging. Nano At present. 2014;9:132–57.

    Article 
    CAS 

    Google Scholar
     

  • Luo Z, Zheng Okay, Xie J. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical purposes. Chem Commun. 2014;50:5143–55.

    Article 
    CAS 

    Google Scholar
     

  • Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to fight antimicrobial resistance. Nat Rev Chem. 2023;7:202–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye L, Cao Z, Liu X, Cui Z, Li Z, Liang Y, Zhu S, Wu S. Noble metal-based nanomaterials as antibacterial brokers. J Alloys Compd. 2022. https://doi.org/10.1016/j.jallcom.2022.164091.

    Article 

    Google Scholar
     

  • Frei A, Zuegg J, Elliott AG, Baker M, Braese S, Brown C, Chen F, Dowson CG, Dujardin G, Jung N, King AP, Mansour AM, Massi M, Moat J, Mohamed HA, Renfrew AK, Rutledge PJ, Sadler PJ, Todd MH, Willans CE, Wilson JJ, Cooper MA, Blaskovich MAT. Metallic complexes as a promising supply for brand spanking new antibiotics. Chem Sci. 2020;11:2627–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Okay, Xie J. Cluster supplies as traceable antibacterial brokers. Acc Chem Res. 2021;2:1104–16.

    CAS 

    Google Scholar
     

  • Zheng Okay, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coord Chem Rev. 2018;357:1–17.

    Article 
    CAS 

    Google Scholar
     

  • Xie Y, Zheng W, Jiang X. Close to-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms. ACS Appl Mater Interfaces. 2020;12:9041–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here