[ad_1]
Lu DE, Hung SH, Su YS, Lee WS. Evaluation of fungal and bacterial Co-infections in mortality instances amongst hospitalized sufferers with covid-19 in Taipei, Taiwan. J Fungi. 2022;8:91.
Hsueh SC, Chao CM, Wang CY, Lai CC, Chen CH. Medical efficacy and security of cefiderocol within the therapy of acute bacterial infections: a scientific evaluation and meta-analysis of randomised managed trials. J Glob Antimicrob Resist. 2021;24:376–82.
Wu HY, Chang PH, Huang YS, Tsai CS, Chen KY, Lin IF, Hsih WH, Tsai WL, Chen JA, Yang TL, Lee CY, Ho TS, Wang HW, Huang SF, Wu AYJ, Chen HJ, Chen YC, Chen WC, Tseng CH, Lin PC, Yang CH, Hong PL, Lee SSJ, Chen YS, Liu YC, Wang FD, Chan YJ, Chang FY, Chang HT, Chen YC, Chen YH, Cheng MF, Chi H, Chiu CH, Ho MW, Hsieh SM, Hsueh PR, Huang CH, Hung CC, Hwang KP, Kao KC, Ko WC, Kuo CF, Lai CH, Lee NY, Lee SJ, Lin HH, Lin YT, Liu CC, Liu PY, Lu PL, Lu CY, Sheng WH, Tang HJ, Tsai HC, Wu TS, Yang CJ. Suggestions and tips for the analysis and administration of coronavirus disease-19 (covid-19) related bacterial and fungal infections in Taiwan. J Microbiol Immunol Infect. 2023;56:207–35.
Hsu TW, Chu CS, Tsai SJ, Bai YM, Su TP, Chen TJ, Chen MH, Liang CS. Danger of main psychological dysfunction after extreme bacterial infections in youngsters and adolescents: a nationwide longitudinal research. Neuropsychobiology. 2022;81:539–49.
Deusenbery C, Wang Y, Shukla A. Current improvements in bacterial an infection detection and therapy. ACS Infect Dis. 2021;7:695–720.
Reygaert WC. An outline of the antimicrobial resistance mechanisms of micro organism. AIMS Microbiol. 2018;4:482–501.
Yeh TK, Jean SS, Lee YL, Lu MC, Ko WC, Lin HJ, Liu PY, Hsueh PR. Bacteriophages and phage-delivered crispr-cas system as antibacterial remedy. Int J Antimicrob Brokers. 2022;59:106475.
Nguyen HT, Ho TL, Pratomo A, Ilsan NA, Huang TW, Chen CH, Chuang EY. Enzymatically triggered graphene oxide launched from multifunctional carriers boosts anti-pathogenic properties for promising wound-healing purposes. Mater Sci Eng C. 2021;128:112265.
Tsai WC, Zhuang ZJ, Lin CY, Chen WJ. Novel antimicrobial peptides with promising exercise towards multidrug resistant salmonella enterica serovar choleraesuis and its stress response mechanism. J Appl Microbiol. 2016;121:952–65.
Tseng TS, Tu IF, Chen HT, Lin LC, Tsai KC, Wu SH, Chen C. Protein-DNA complex-guided discovery of the antibacterial lead e1 for restoring the susceptibility of: Klebsiella pneumoniae to polymyxin b by concentrating on the response regulator pmra. Chem Commun. 2018;54:6372–5.
Miller SI. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. mBio. 2016;7:e01541-01516.
Hsueh PR, Huang HC, Younger TG, Su CY, Liu CS, Yen MY. Micro organism killing nanotechnology bio-kil successfully reduces bacterial burden in intensive care items. Eur J Clin Microbiol. 2014;33:591–7.
Lee WS, Hsieh TC, Shiau JC, Ou TY, Chen FL, Liu YH, Yen MY, Hsueh PR. Bio-kil, a nano-based disinfectant, reduces environmental bacterial burden and multidrug-resistant organisms in intensive care items. J Microbiol Immunol Infect. 2017;50:737–46.
Nazzal S, Chen CP, Tsai T. Nanotechnology in antimicrobial photodynamic inactivation. J Meals Drug Anal. 2011;19:383–95+538.
Chan WP, Huang KC, Bai MY. Silk fibroin protein-based nonwoven mats incorporating baicalein chinese language natural extract: preparation, characterizations, and in vivo analysis. J Biomed Mater Res B Appl Biomater. 2017;105:420–30.
Okoro G, Husain S, Saukani M, Mutalik C, Yougbaré S, Hsiao Y-C, Kuo T-R. Rising traits in nanomaterials for photosynthetic biohybrid programs. ACS Mater Lett. 2023;5:95–115.
Mutalik C, Okoro G, Chou H-L, Lin IH, Yougbaré S, Chang C-C, Kuo T-R. Part-dependent 1T/2H-MoS2 nanosheets for efficient photothermal killing of micro organism. ACS Maintain Chem Eng. 2022;10:8949–57.
Mutalik C, Okoro G, Krisnawati DI, Jazidie A, Rahmawati EQ, Rahayu D, Hsu WT, Kuo TR. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial actions. J Colloid Interface Sci. 2022;607:1825–35.
Mutalik C, Lin I-H, Krisnawati DI, Khaerunnisa S, Khafid M, Widodo Hsiao Y-C, Kuo T-R. Antibacterial pathways in transition metal-based nanocomposites: a mechanistic overview. Int J Nanomed. 2022;17:6821–42.
Yougbaré S, Mutalik C, Chung P-F, Krisnawati DI, Rinawati F, Irawan H, Kristanto H, Kuo T-R. Gold nanorod-decorated metallic MoS2 nanosheets for synergistic photothermal and photodynamic antibacterial remedy. Nanomaterials. 2021;11:3064.
Mutalik C, Krisnawati DI, Patil SB, Khafid M, Atmojo DS, Santoso P, Lu SC, Wang DY, Kuo SR. Part-dependent MoS2 nanoflowers for light-driven antibacterial utility. ACS Maintain Chem Eng. 2021;9:7904–12.
Yougbaré S, Chou H-L, Yang C-H, Krisnawati DI, Jazidie A, Nuh M, Kuo T-R. Aspect-dependent gold nanocrystals for efficient photothermal killing of micro organism. J Hazard Mater. 2021;407:124617.
Zheng Y, Wei M, Wu H, Li F, Ling D. Antibacterial steel nanoclusters. J Nanobiotechnology. 2022;20:328.
Yougbare S, Mutalik C, Okoro G, Lin IH, Krisnawati DI, Jazidie A, Nuh M, Chang CC, Kuo TR. Rising traits in nanomaterials for antibacterial purposes. Int J Nanomed. 2021;16:5831–67.
Yougbare S, Mutalik C, Krisnawati DI, Kristanto H, Jazidie A, Nuh M, Cheng TM, Kuo TR. Nanomaterials for the photothermal killing of micro organism. Nanomaterials. 2020;10:1123.
Mutalik C, Wang DY, Krisnawati DI, Jazidie A, Yougbare S, Kuo TR. Mild-activated heterostructured nanomaterials for antibacterial purposes. Nanomaterials. 2020;10:643.
Chang T-Okay, Cheng T-M, Chu H-L, Tan S-H, Kuo J-C, Hsu P-H, Su C-Y, Chen H-M, Lee C-M, Kuo T-R. Metabolic mechanism investigation of antibacterial lively cysteine-conjugated gold nanoclusters in escherichia coli. ACS Maintain Chem Eng. 2019;7:15479–86.
Yougbare S, Chang T-Okay, Tan S-H, Kuo J-C, Hsu P-H, Su C-Y, Kuo T-R. Antimicrobial gold nanoclusters: Current developments and future views. Int J Mol Sci. 2019;20:2924.
Kaur N, Aditya RN, Singh A, Kuo TR. Biomedical purposes for gold nanoclusters: current developments and future views. Nanoscale Res Lett. 2018;13:302.
Nain A, Tseng Y-T, Wei S-C, Periasamy AP, Huang C-C, Tseng F-G, Chang H-T. Capping 1,3-propanedithiol to spice up the antibacterial exercise of protein-templated copper nanoclusters. J Hazard Mater. 2020;389:121821.
Yuan X, Setyawati MI, Leong DT, Xie J. Ultrasmall Ag+-rich nanoclusters as extremely environment friendly nanoreservoirs for bacterial killing. Nano Res. 2014;7:301–7.
Cheng TM, Chu HL, Lee YC, Wang DY, Chang CC, Chung KL, Yen HC, Hsiao CW, Pan XY, Kuo TR, Chen CC. Quantitative evaluation of glucose metabolic cleavage in glucose transporters overexpressed most cancers cells by target-specific fluorescent gold nanoclusters. Anal Chem. 2018;90:3974–80.
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells however don’t trigger acute cytotoxicity. Small. 2005;1:325–7.
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49.
Molaabasi F, Hosseinkhani S, Moosavi-Movahedi AA, Shamsipur M. Hydrogen peroxide delicate hemoglobin-capped gold nanoclusters as a fluorescence enhancing sensor for the label-free detection of glucose. RSC Adv. 2015;5:33123–35.
Choi O, Hu Z. Dimension dependent and reactive oxygen species associated nanosilver toxicity to nitrifying micro organism. Environ Sci Technol. 2008;42:4583–8.
El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Floor charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45:283–7.
Pal S, Tak YK, Music JM. Does the antibacterial exercise of silver nanoparticles rely upon the form of the nanoparticle? A research of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.
Wang L, Hu C, Shao L. The antimicrobial exercise of nanoparticles: current scenario and prospects for the long run. Int J Nanomed. 2017;12:1227–49.
Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall coinage steel nanoclusters as promising theranostic probes for biomedical purposes. J Am Chem Soc. 2023;145:11879–98.
Wilcoxon JP, Abrams BL. Synthesis, construction and properties of steel nanoclusters. Chem Soc Rev. 2006;35:1162–94.
Antoine R, Broyer M, Dugourd P. Metallic nanoclusters: From elementary elements to digital properties and optical purposes. Sci Technol Adv Mater. 2023;24:2222546.
Mariscal M, Oviedo O, Leiva E. Metallic clusters and nanoalloys: From modeling to purposes. New York: Springer New York; 2013.
Sahoo Okay, Gazi TR, Roy S, Chakraborty I. Nanohybrids of atomically exact steel nanoclusters. Commun Chem. 2023;6:157.
Zeng Y, Havenridge S, Gharib M, Baksi A, Weerawardene Okay, Ziefuss AR, Strelow C, Rehbock C, Mews A, Barcikowski S, Kappes MM, Parak WJ, Aikens CM, Chakraborty I. Impression of ligands on structural and optical properties of Ag(29) nanoclusters. J Am Chem Soc. 2021;143:9405–14.
Li S, Du X, Liu Z, Li Y, Shao Y, Jin R. Dimension results of atomically exact gold nanoclusters in catalysis. Summary Chem. 2023;1:14–28.
Li Y-M, Hu J, Zhu M. Confining atomically exact nanoclusters in steel–natural frameworks for superior catalysis. Coord Chem Rev. 2023;495:215364.
Shan H, Shi J, Chen T, Cao Y, Yao Q, An H, Yang Z, Wu Z, Jiang Z, Xie J. Modulating catalytic exercise and stability of atomically exact gold nanoclusters as peroxidase mimics through ligand engineering. ACS Nano. 2023;17:2368–77.
Goswami N, Yao Q, Luo Z, Li J, Chen T, Xie J. Luminescent steel nanoclusters with aggregation-induced emission. J Phys Chem Lett. 2016;7:962–75.
Aires A, Llarena I, Moller M, Castro-Smirnov J, Cabanillas-Gonzalez J, Cortajarena AL. A easy method to design proteins for the sustainable synthesis of steel nanoclusters. Angew Chem Int Ed Engl. 2019;58:6214–9.
Gao P, Chang X, Zhang D, Cai Y, Chen G, Wang H, Wang T. Synergistic integration of steel nanoclusters and biomolecules as hybrid programs for therapeutic purposes. Acta Pharm Sin B. 2021;11:1175–99.
Yang J, Yang F, Zhang C, He X, Jin R. Metallic nanoclusters as biomaterials for bioapplications: atomic precision as the subsequent aim. ACS Mater Lett. 2022;4:1279–96.
Ebina A, Hossain S, Horihata H, Ozaki S, Kato S, Kawawaki T, Negishi Y. One-, two-, and three-dimensional self-assembly of atomically exact steel nanoclusters. Nanomaterials. 2020;10:1105.
Kolay S, Bain D, Maity S, Devi A, Patra A, Antoine R. Self-assembled steel nanoclusters: Driving forces and structural correlation with optical properties. Nanomaterials. 2022;12:544.
Wang J, Lin X, Shu T, Su L, Liang F, Zhang X. Self-assembly of steel nanoclusters for aggregation-induced emission. Int J Mol Sci. 1891;2019:20.
Grassian VH. When dimension actually issues: size-dependent properties and floor chemistry of steel and steel oxide nanoparticles in fuel and liquid section environments. J Phys Chem C. 2008;112:18303–13.
Slavin YN, Asnis J, Häfeli UO, Bach H. Metallic nanoparticles: understanding the mechanisms behind antibacterial exercise. J Nanobiotechnology. 2017;15:65.
Jiang X, Du B, Huang Y, Zheng J. Ultrasmall noble steel nanoparticles: breakthroughs and biomedical implications. Nano At present. 2018;21:106–25.
Chang YH, Lin JC, Chen YC, Kuo TR, Wang DY. Facile synthesis of two-dimensional ruddlesden-popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Res Lett. 2018;13:247.
Kuo T-R, Lee Y-C, Chou H-L, Wei C-Y, Wen C-Y, Chang Y-H, Pan X-Y, Wang D-Y. Plasmon-enhanced hydrogen evolution on particular side of silver nanocrystals. Chem Mater. 2019;31:3722–8.
Zheng Okay, Setyawati MI, Leong DT, Xie J. Overcoming bacterial bodily defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact Mater. 2021;6:941–50.
Díez I, Ras RH. Fluorescent silver nanoclusters. Nanoscale. 2011;3:1963–70.
Hoseinzadeh E, Makhdoumi P, Taha P, Stelling J, Hossini H, Kamal M, Ashraf G. A evaluation on nano-antimicrobials: Metallic nanoparticles, strategies and mechanisms. Curr Drug Metab. 2016;18:120–8.
Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by superior modification applied sciences. Int J Nanomedicine. 2018;13:3311–27.
Karakoti AS, Hench LL, Seal S. The potential toxicity of nanomaterials—the position of surfaces. JOM. 2006;58:77–82.
Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical perception of the cytotoxicity mechanism. Environ Sci Technol. 2006;40:6151–6.
Galdiero S, Falanga A, Cantisani M, Tarallo R, Della Pepa ME, D’Oriano V, Galdiero M. Microbe-host interactions: Construction and position of gram-negative bacterial porins. Curr Protein Pept Sci. 2012;13:843–54.
Vergalli J, Bodrenko IV, Masi M, Moynié L, Acosta-Gutiérrez S, Naismith JH, Davin-Regli A, Ceccarelli M, van den Berg B, Winterhalter M, Pagès JM. Porins and small-molecule translocation throughout the outer membrane of gram-negative micro organism. Nat Rev Microbiol. 2020;18:164–76.
Besnard M, Martinac B, Ghazi A. Voltage-dependent porin-like ion channels within the archaeon haloferax volcanii. J Biol Chem. 1997;272:992–5.
Prajapati JD, Kleinekathöfer U, Winterhalter M. Find out how to enter a bacterium: bacterial porins and the permeation of antibiotics. Chem Rev. 2021;121:5158–92.
Winterhalter M. Antibiotic uptake via porins situated within the outer membrane of gram-negative micro organism. Knowledgeable Opin. 2021;18:449–57.
Salton MRJ, Kim KS, Construction. In Medical microbiology, Baron S, (Ed). College of Texas Medical Department at Galveston Copyright © 1996, The College of Texas Medical Department at Galveston. Galveston (TX), 1996.
Fabio Bagnoli RR. Protein and sugar export and meeting in gram-positive micro organism. 1st ed. Cham: Springer Cham; 2017. p. X, 337.
Prajapati JD, Kleinekathofer U, Winterhalter M. Find out how to enter a bacterium: bacterial porins and the permeation of antibiotics. Chem Rev. 2021;121:5158–92.
Trias J, Benz R. Characterization of the channel fashioned by the mycobacterial porin in lipid bilayer membranes. Demonstration of voltage gating and of destructive level fees on the channel mouth. J Biol Chem. 1993;268:6234–40.
Wang Y, Malkmes MJ, Jiang C, Wang P, Zhu L, Zhang H, Zhang Y, Huang H, Jiang L. Antibacterial mechanism and transcriptome evaluation of ultra-small gold nanoclusters as a substitute of dangerous antibiotics towards gram-negative micro organism. J Hazard Mater. 2021;416:126236.
Jin R. Atomically exact steel nanoclusters: Steady sizes and optical properties. Nanoscale. 2015;7:1549–65.
Seil JT, Webster TJ. Antimicrobial purposes of nanotechnology: strategies and literature. Int J Nanomed. 2012;7:2767–81.
Zheng Okay, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11:6904–10.
Ye Z, Zhu H, Zhang S, Li J, Wang J, Wang E. Extremely environment friendly nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. J Mater Chem B. 2021;9:307–13.
Lin Y, Ren J, Qu X. Catalytically lively nanomaterials: a promising candidate for synthetic enzymes. Acc Chem Res. 2014;47:1097–105.
Gao L, Yan X. Nanozymes: an rising subject bridging nanotechnology and biology. Sci China Life Sci. 2016;59:400–2.
Wei H, Wang E. Nanomaterials with enzyme-like traits (nanozymes): next-generation synthetic enzymes. Chem Soc Rev. 2013;42:6060–93.
Kuo TR, Chen WT, Liao HJ, Yang YH, Yen HC, Liao TW, Wen CY, Lee YC, Chen CC, Wang DY. Enhancing hydrogen evolution exercise of earth-abundant cobalt-doped iron pyrite catalysts by floor modification with phosphide. Small. 2017;13:1603356.
Li C-H, Kuo T-R, Su H-J, Lai W-Y, Yang P-C, Chen J-S, Wang D-Y, Wu Y-C, Chen C-C. Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Sci Rep. 2015;5:15675.
Kuo T-R, Liao H-J, Chen Y-T, Wei C-Y, Chang C-C, Chen Y-C, Chang Y-H, Lin J-C, Lee Y-C, Wen C-Y. Prolonged seen to near-infrared harvesting of earth-abundant FeS2-TiO2 heterostructures for extremely lively photocatalytic hydrogen evolution. Inexperienced Chem. 2018;20:1640–7.
Zhang Y, Li S, Liu H, Lengthy W, Zhang X-D. Enzyme-like properties of gold clusters for biomedical utility. Entrance Chem. 2020;8:219.
Zhou C, Wang Q, Jiang J, Gao L. Nanozybiotics: Nanozyme-based antibacterials towards bacterial resistance. Antibiotics. 2022;11:390.
Alizadeh N, Salimi A. Multienzymes exercise of metals and steel oxide nanomaterials: purposes from biotechnology to drugs and environmental engineering. J Nanobiotechnology. 2021;19:26.
Yadav SV, Rathod VK. Oxidase-like exercise of magnetically separable nano ceria for catechol detection. SN Appl Sci. 2019;1:1071.
Tonoyan L, Fleming GTA, Mc Cay PH, Friel R, O’Flaherty V. Antibacterial potential of an antimicrobial agent impressed by peroxidase-catalyzed programs. Entrance Microbiol. 2017;8:680.
Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X. Mechanisms of oxidase and superoxide dismutation-like actions of gold, silver, platinum, and palladium, and their alloys: a common strategy to the activation of molecular oxygen. J Am Chem Soc. 2015;137:15882–91.
Zheng Y, Liu W, Qin Z, Chen Y, Jiang H, Wang X. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjugate Chem. 2018;29:3094–103.
Shaikh S, Nazam N, Rizvi SMD, Ahmad Okay, Baig MH, Lee EJ, Choi I. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci. 2019;20:2468.
Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L. The interplay of micro organism with engineered nanostructured polymeric supplies: a evaluation. Sci World J. 2014;2014:410423.
Zhang X, Ma G, Wei W. Simulation of nanoparticles interacting with a cell membrane: probing the structural foundation and potential biomedical utility. NPG Asia Mater. 2021;13:52.
Gupta R, Rai B. Impact of dimension and floor cost of gold nanoparticles on their pores and skin permeability: a molecular dynamics research. Sci Rep. 2017;7:45292.
Yue T, Zhang X. Cooperative impact in receptor-mediated endocytosis of a number of nanoparticles. ACS Nano. 2012;6:3196–205.
Chen Y, Ren L, Solar L, Bai X, Zhuang G, Cao B, Hu G, Zheng N, Liu S. Amphiphilic silver nanoclusters present lively nano–bio interplay with compelling antibacterial exercise towards multidrug-resistant micro organism. NPG Asia Mater. 2020;12:56.
Simon AT, Dutta D, Chattopadhyay A, Ghosh SS. Copper nanocluster-doped luminescent hydroxyapatite nanoparticles for antibacterial and antibiofilm purposes. ACS Omega. 2019;4:4697–706.
Zhu H, Li J, Wang J, Wang E. Lighting up the gold nanoclusters through host–visitor recognition for high-efficiency antibacterial efficiency and imaging. ACS Appl Mater Interfaces. 2019;11:36831–8.
Zhang B, Chen J, Cao Y, Chai OJH, Xie J. Ligand design in ligand-protected gold nanoclusters. Small. 2021;17:2004381.
Truttmann V, Herzig C, Illes I, Limbeck A, Pittenauer E, Stöger-Pollach M, Allmaier G, Bürgi T, Barrabés N, Rupprechter G. Ligand engineering of immobilized nanoclusters on surfaces: Ligand alternate reactions with supported au11(pph3)7br3. Nanoscale. 2020;12:12809–16.
Cheng Y, Feng G, Moraru CI. Micro- and nanotopography delicate bacterial attachment mechanisms: a evaluation. Entrance Microbiol. 2019;10:191.
Kendall Okay, Van der Roberts AD. waals forces influencing adhesion of cells. Philos Trans R Soc B Biol Sci. 2015;370:20140078.
Goulter RM, Light IR, Dykes GA. Points in figuring out components influencing bacterial attachment: a evaluation utilizing the attachment of Escherichia coli to abiotic surfaces for example. Lett Appl Microbiol. 2009;49:1–7.
van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB. Bacterial adhesion: a physicochemical method. Microb Ecol. 1989;17:1–15.
Sharma S, Conrad JC. Attachment from circulation of Escherichia coli micro organism onto silanized glass substrates. Langmuir. 2014;30:11147–55.
Pang Z, Li Q, Jia Y, Yan W, Qi J, Guo Y, Hu F, Zhou D, Jiang X. Controlling the pyridinium–zwitterionic ligand ratio on atomically exact gold nanoclusters permitting for eradicating gram-positive drug-resistant micro organism and retaining biocompatibility. Chem Sci. 2021;12:14871–82.
Mohamed ZF, Edyvean RGJ, Pourzolfaghar H, Kasim N. Modeling of the van der Waals forces in the course of the adhesion of capsule-shaped micro organism to flat surfaces. Biomimetics. 2021;6:5.
Zheng Okay, Setyawati MI, Leong DT, Xie J. Floor ligand chemistry of gold nanoclusters determines their antimicrobial means. Chem Mater. 2018;30:2800–8.
Tang M, Zhang J, Yang C, Zheng Y, Jiang H. Gold nanoclusters for bacterial detection and an infection remedy. Entrance Chem. 2020;8:181.
Xie Y, Liu Y, Yang J, Liu Y, Hu F, Zhu Okay, Jiang X. Gold nanoclusters for concentrating on methicillin-resistant staphylococcus aureus in vivo. Angew Chem Int Ed. 2018;57:3958–62.
Meng J, Hu Z, He M, Wang J, Chen X. Gold nanocluster floor ligand alternate: an oxidative stress amplifier for combating multidrug resistance bacterial an infection. J Colloid Interface Sci. 2021;602:846–58.
Tang Z, Liu S, Chen N, Luo M, Wu J, Zheng Y. Gold nanoclusters deal with intracellular bacterial infections: eliminating phagocytic pathogens and regulating mobile immune response. Colloids Surf B. 2021;205:111899.
Li Y, Zhen J, Tian Q, Shen C, Zhang L, Yang Okay, Shang L. One step synthesis of positively charged gold nanoclusters as efficient antimicrobial nanoagents towards multidrug-resistant micro organism and biofilms. J Colloid Interface Sci. 2020;569:235–43.
Huma Z-E, Gupta A, Javed I, Das R, Hussain SZ, Mumtaz S, Hussain I, Rotello VM. Cationic silver nanoclusters as potent antimicrobials towards multidrug-resistant micro organism. ACS Omega. 2018;3:16721–7.
Fei X, Ma X, Fang G, Chong Y, Tian X, Ge C. Antimicrobial peptide-templated silver nanoclusters with membrane exercise for enhanced bacterial killing. J Nanosci Nanotechnol. 2020;20:1425–33.
Li X, Li S, Bai Q, Sui N, Zhu Z. Gold nanoclusters embellished amine-functionalized graphene oxide nanosheets for seize, oxidative stress, and photothermal destruction of micro organism. Colloids Surf B. 2020;196:111313.
Pranantyo D, Liu P, Zhong W, Kang E-T, Chan-Park MB. Antimicrobial peptide-reduced gold nanoclusters with charge-reversal moieties for bacterial concentrating on and imaging. Biomacromol. 2019;20:2922–33.
Li X, Fu T, Li B, Yan P, Wu Y. Riboflavin-protected ultrasmall silver nanoclusters with enhanced antibacterial exercise and the mechanisms. RSC Adv. 2019;9:13275–82.
Liu J, Liu L, Li S, Kang Q, Zhang R, Zhu Z. Self-assembled nanogels of luminescent thiolated silver nanoclusters and chitosan as bactericidal agent and bacterial sensor. Mater Sci Eng C. 2021;118:111520.
Xie Y, Zhang Q, Zheng W, Jiang X. Small molecule-capped gold nanoclusters for curing pores and skin infections. ACS Appl Mater Interfaces. 2021;13:35306–14.
Zheng Okay, Xie J. Composition-dependent antimicrobial means of full-spectrum auxag25–x alloy nanoclusters. ACS Nano. 2020;14:11533–41.
Zheng Okay, Li Okay, Chang T-H, Xie J, Chen P-Y. Synergistic antimicrobial functionality of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv Funct Mater. 2019;29:1904603.
Liu J, Li X, Liu L, Bai Q, Sui N, Zhu Z. Self-assembled ultrasmall silver nanoclusters on liposome for topical antimicrobial supply. Colloids Surf B. 2021;200:111618.
Yang H, Cai R, Zhang Y, Chen Y, Gu B. Gold nanoclusters as an antibacterial different towards clostridium difficile. Int J Nanomed. 2020;15:6401.
Wu X, Chen Y, Zhang Y, Shan Y, Peng Z, Gu B, Yang H. Au nanoclusters ameliorate Shigella infectious colitis by inducing oxidative stress. Int J Nanomed. 2021;16:4545–57.
Kuo J-C, Tan S-H, Hsiao Y-C, Mutalik C, Chen H-M, Yougbaré S, Kuo T-R. Unveiling the antibacterial mechanism of gold nanoclusters through in situ transmission electron microscopy. ACS Maintain Chem Eng. 2022;10:464–71.
Jin J-C, Wu X-J, Xu J, Wang B-B, Jiang F-L, Liu Y. Ultrasmall silver nanoclusters: extremely environment friendly antibacterial exercise and their mechanisms. Biomater Sci. 2017;5:247–57.
Zheng Okay, Setyawati MI, Leong DT, Xie J. Observing antimicrobial course of with traceable gold nanoclusters. Nano Res. 2021;14:1026–33.
Zheng Okay, Li S, Jing L, Chen P-Y, Xie J. Synergistic antimicrobial titanium carbide (mxene) conjugated with gold nanoclusters. Adv Healthc Mater. 2020;9:2001007.
Sangsuwan A, Kawasaki H, Matsumura Y, Iwasaki Y. Antimicrobial silver nanoclusters bearing biocompatible phosphorylcholine-based zwitterionic safety. Bioconjugate Chem. 2016;27:2527–33.
Hwang GB, Huang H, Wu G, Shin J, Kafizas A, Karu Okay, Toit HD, Alotaibi AM, Mohammad-Hadi L, Allan E, MacRobert AJ, Gavriilidis A, Parkin IP. Photobactericidal exercise activated by thiolated gold nanoclusters at low flux ranges of white gentle. Nat Commun. 2020;11:1207.
Biswas S, Das S, Negishi Y. Progress and prospects within the design of useful atomically-precise Ag(i)-thiolate nanoclusters and their meeting approaches. Coord Chem Rev. 2023. https://doi.org/10.1016/j.ccr.2023.215255.
Zhang L, Wang E. Metallic nanoclusters: New fluorescent probes for sensors and bioimaging. Nano At present. 2014;9:132–57.
Luo Z, Zheng Okay, Xie J. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical purposes. Chem Commun. 2014;50:5143–55.
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to fight antimicrobial resistance. Nat Rev Chem. 2023;7:202–24.
Ye L, Cao Z, Liu X, Cui Z, Li Z, Liang Y, Zhu S, Wu S. Noble metal-based nanomaterials as antibacterial brokers. J Alloys Compd. 2022. https://doi.org/10.1016/j.jallcom.2022.164091.
Frei A, Zuegg J, Elliott AG, Baker M, Braese S, Brown C, Chen F, Dowson CG, Dujardin G, Jung N, King AP, Mansour AM, Massi M, Moat J, Mohamed HA, Renfrew AK, Rutledge PJ, Sadler PJ, Todd MH, Willans CE, Wilson JJ, Cooper MA, Blaskovich MAT. Metallic complexes as a promising supply for brand spanking new antibiotics. Chem Sci. 2020;11:2627–39.
Zheng Okay, Xie J. Cluster supplies as traceable antibacterial brokers. Acc Chem Res. 2021;2:1104–16.
Zheng Okay, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coord Chem Rev. 2018;357:1–17.
Xie Y, Zheng W, Jiang X. Close to-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms. ACS Appl Mater Interfaces. 2020;12:9041–9.
[ad_2]