Home Nanotechnology Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis mannequin

Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis mannequin

0
Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis mannequin

[ad_1]

  • Firestein, G. S. Evolving ideas of rheumatoid arthritis. Nature 423, 356–361 (2003).

    Article 
    CAS 

    Google Scholar
     

  • McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Burmester, G. R., Feist, E. & Dörner, T. Rising cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 77–88 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Van Vollenhoven, R. F. Therapy of rheumatoid arthritis: cutting-edge. Nat. Rev. Rheumatol. 5, 531–541 (2009).

    Article 

    Google Scholar
     

  • Aletaha, D. & Smolen, J. S. Analysis and administration of rheumatoid arthritis: a evaluation. JAMA 320, 1360–1372 (2018).

    Article 

    Google Scholar
     

  • Zhu, Y. et al. Rheumatoid arthritis microenvironment insights into remedy impact of nanomaterials. Nano At this time 42, 101358 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Esensten, J. H., Wofsy, D. & Bluestone, J. A. Regulatory T cells as therapeutic targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 560–565 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Synergistic oxygen technology and reactive oxygen species scavenging by manganese ferrite/ceria Co-decorated nanoparticles for rheumatoid arthritis remedy. ACS Nano 13, 3206–3217 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, L. et al. TSC1 controls macrophage polarization to stop inflammatory illness. Nat. Commun. 5, 4696 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Weyand, C. M. & Goronzy, J. J. Immunometabolism in early and late levels of rheumatoid arthritis. Nat. Rev. Immunol. 13, 291–301 (2017).

    CAS 

    Google Scholar
     

  • Yang, C. et al. Inorganic nanosheets facilitate humoral immunity towards medical implant infections by modulating immune co-stimulatory pathways. Nat. Commun. 13, 4866 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, W. et al. Microbiotic nanomedicine for tumor-specific chemotherapy-synergized innate/adaptive antitumor immunity. Nano At this time 42, 101377 (2022).

    Article 
    CAS 

    Google Scholar
     

  • McInnes, I. B. & Schett, G. Cytokines within the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Pelaz, B. et al. Various functions of nanomedicine. ACS Nano 11, 2313–2381 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Dominguez-Villar, M. & Hafler, D. A. Regulatory T cells in autoimmune illness. Nat. Immunol. 19, 665–673 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kim, C. Ok. et al. Ceria nanoparticles that may defend towards ischemic stroke. Angew. Chem. Int. Ed. 51, 11039–11043 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Soh, M. et al. Ceria–zirconia nanoparticles as an enhanced multi-antioxidant for sepsis remedy. Angew. Chem. Int. Ed. 56, 11399–11403 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, L., Bang, S. & Noh, I. Tissue regeneration of human mesenchymal stem cells on porous gelatin micro-carriers by long-term dynamic in vitro tradition. Tissue Eng. Regen. Med. 16, 19–28 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, W. & Xu, J. Immune modulation by mesenchymal stem cells. Cell Prolif. 53, e12712 (2022).

    Article 

    Google Scholar
     

  • Suryaprakash, S. et al. Engineered mesenchymal stem cell/nanomedicine spheroid as an lively drug supply platform for combinational glioblastoma remedy. Nano Lett. 19, 1701–1705 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Ok. et al. Low-dose X-ray radiotherapy–radiodynamic remedy by way of nanoscale steel–natural frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shahir, M. et al. Impact of mesenchymal stem cell‐derived exosomes on the induction of mouse tolerogenic dendritic cells. J. Cell. Physiol. 235, 7043–7055 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gao, J., Gu, H. & Xu, B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical functions. Acc. Chem. Res. 42, 1097–1107 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Pelaz, B. et al. Floor functionalization of nanoparticles with polyethylene glycol: results on protein adsorption and mobile uptake. ACS Nano 9, 6996–7008 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Koo, S. et al. Enhanced chemodynamic remedy by Cu–Fe peroxide nanoparticles: tumor microenvironment-mediated synergistic Fenton response. ACS Nano 16, 2535–2545 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mittal, M. et al. Reactive oxygen species in irritation and tissue damage. Antioxid. Redox Sign. 20, 1126–1167 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kemp, Ok. Mesenchymal stem cell‐secreted superoxide dismutase promotes cerebellar neuronal survival. J. Neurochem. 114, 1569–1580 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in well being and illness. Nat. Rev. Immunol. 8, 726–736 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Adams, D. O. & Hamilton, T. A. The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283–318 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Richard, M. P. Apoptosis as a therapeutic instrument in rheumatoid arthritis. Nat. Rev. Immunol. 2, 527–535 (2002).

    Article 

    Google Scholar
     

  • Cifuentes-Rius, A. et al. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat. Nanotechnol. 16, 37–46 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hilkens, C. & Isaacs, J. Tolerogenic dendritic cell remedy for rheumatoid arthritis: the place are we now? Clin. Exp. Immunol. 172, 148–157 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, B. et al. Website-specific PEGylation of interleukin-2 enhances immunosuppression by way of the sustained activation of regulatory T cells. Nat. Biomed. Eng. 5, 1288–1305 (2021).

    Article 

    Google Scholar
     

  • Peng, B. et al. Tuned cationic dendronized polymer: molecular scavenger for rheumatoid arthritis remedy. Angew. Chem. Int. Ed. 58, 4254–4258 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Inglis, J. J. et al. Collagen‐induced arthritis as a mannequin of hyperalgesia: practical and mobile evaluation of the analgesic actions of tumor necrosis issue blockade. Arthritis Rheumatol. 56, 4015–4023 (2007).

    Article 

    Google Scholar
     

  • Ruiz-Fernández, C. et al. WISP-2 modulates the induction of inflammatory mediators and cartilage catabolism in chondrocytes. Lab. Make investments. 102, 989–999 (2022).

    Article 

    Google Scholar
     

  • Barbi, J. et al. Metabolic management of the Treg/Th17 axis. Immunol. Rev. 252, 52–77 (2013).

    Article 

    Google Scholar
     

  • Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Desreumaux, P. et al. Security and efficacy of antigen-specific regulatory T-cell remedy for sufferers with refractory Crohn’s illness. Gastroenterology 143, 1207–1217 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Reife, R. A. et al. SWR mice are proof against collagen-induced arthritis however produce probably arthritogenic antibodies. Arthritis Rheumatol. 34, 776–781 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Bettelli, E. et al. Reciprocal developmental pathways for the technology of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Korn, T. et al. IL-21 initiates another pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Sakaguchi, S. et al. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Dobrovolskaia, M. A. & McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hoshyar, N., Grey, S., Han, H. & Bao, G. The impact of nanoparticle measurement on in vivo pharmacokinetics and mobile interplay. Nanomedicine 11, 673–692 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Madaan, A. et al. A stepwise process for isolation of murine bone marrow and technology of dendritic cells. J. Biol. Strategies 1, 1–6 (2014).

    Article 

    Google Scholar
     

  • Model, D. D., Latham, Ok. A. & Rosloniec, E. F. Collagen-induced arthritis. Nat. Protoc. 2, 1269–1275 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Gao, X. H. et al. A store-operated calcium channel inhibitor attenuates collagen-induced arthritis. Br. J. Pharmacol. 172, 2991–3002 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Schmitz, N., Laverty, S., Kraus, V. B. & Aigner, T. Primary strategies in histopathology of joint tissues. Osteoarthr. Cartil. 18, 113–116 (2010).

    Article 

    Google Scholar
     

  • Kim, J. E. et al. Impact of self-assembled peptide-mesenchymal stem cell complicated on the development of osteoarthritis in a rat mannequin. Int. J. Nanomed. 9, 141–157 (2014).

    Article 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here