Home Nanotechnology Biomineralized tetramethylpyrazine-loaded PCL/gelatin nanofibrous membrane promotes vascularization and bone regeneration of rat skull defects | Journal of Nanobiotechnology

Biomineralized tetramethylpyrazine-loaded PCL/gelatin nanofibrous membrane promotes vascularization and bone regeneration of rat skull defects | Journal of Nanobiotechnology

0
Biomineralized tetramethylpyrazine-loaded PCL/gelatin nanofibrous membrane promotes vascularization and bone regeneration of rat skull defects | Journal of Nanobiotechnology

[ad_1]

  • Wang C, Wang M. Electrospun multicomponent and multifunctional nanofibrous bone tissue engineering scaffolds. J Mater Chem B. 2017;5(7):1388–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin W, Chen M, Qu T, Li J, Man Y. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering, Journal of biomedical supplies analysis. Half B Appl Biomater. 2020;108(4):1311–21.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Liu L, Wang Z, Zheng G, Chen Q, Luo E. Utility of electrospinning technique on cartilage tissue engineering. Curr Stem Cell Res Ther. 2018;13(7):526–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Wang H, Xiong J, Li J, Miao X, Lan X, Liu X, Wang W, Cai N, Tang Y. Fabrication and in vitro analysis of PCL/gelatin hierarchical scaffolds primarily based on soften electrospinning writing and answer electrospinning for bone regeneration, supplies science & engineering. C Supplies Biol Appl. 2021;128: 112287.

    CAS 

    Google Scholar
     

  • Oztemur J, Yalcin-Enis I. Improvement of biodegradable webs of PLA/PCL blends ready through electrospinning: morphological, chemical, and thermal characterization, journal of biomedical supplies analysis. Half B Utilized Biomater. 2021;109(11):1844–56.

    Article 
    CAS 

    Google Scholar
     

  • Qian Y, Zhou X, Zhang F, Diekwisch TGH, Luan X, Yang J. Triple PLGA/PCL scaffold modification together with silver impregnation collagen coating, and electrospinning considerably enhance biocompatibility, antimicrobial, and osteogenic properties for orofacial tissue regeneration. ACS Appl Mater Interf. 2019;11(41):37381–96.

    Article 
    CAS 

    Google Scholar
     

  • Islam MM, Shahruzzaman M, Biswas S, NurusSakib M, Rashid TU. Chitosan primarily based bioactive supplies in tissue engineering applications-a evaluation. Bioactive Mater. 2020;5(1):164–83.

    Article 

    Google Scholar
     

  • Dems D, Rodrigues da Silva J, Hélary C, Wien F, Marchand M, Debons N, Muller L, Chen Y, Schanne-Klein MC, Laberty-Robert C, Krins N, Aimé C. Native collagen: electrospinning of pure cross-linker-free, self-supported membrane. ACS Appl Bio Mater. 2020;3(5):2948–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Zhang J, Wu H, Li Y, Li X, Zhang J, Huang L, Deng S, Tan S, Cai X. Fabrication of a Cu Nanoparticles/Poly(ε-caprolactone)/gelatin fiber membrane with good antibacterial exercise and mechanical property through inexperienced electrospinning. ACS Appl Bio Mater. 2021;4(8):6137–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sedghi R, Shaabani A, Sayyari N. Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue restore and regeneration. Carbohyd Polym. 2020;230: 115707.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds, Journal of biomedical supplies analysis. Half B Appl Biomater. 2005;72(1):156–65.

    Article 

    Google Scholar
     

  • Salifu AA, Lekakou C, Labeed FH. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. J Biomed Mater Res Half A. 2017;105(7):1911–26.

    Article 
    CAS 

    Google Scholar
     

  • Salifu AA, Lekakou C, Labeed F. Multilayer mobile stacks of gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. J Biomed Mater Res Half A. 2017;105(3):779–89.

    Article 
    CAS 

    Google Scholar
     

  • Xue J, He M, Liu H, Niu Y, Crawford A, Coates PD, Chen D, Shi R, Zhang L. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber buildings for anti-infective tissue regeneration membranes. Biomaterials. 2014;35(34):9395–405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marins NH, Lee BEJ, ES. RM, A. Raghavan, N.L. Villarreal Carreño, Ok. Grandfield Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering colloids and surfaces. B Biointerf. 2019;182:110386.

    Article 
    CAS 

    Google Scholar
     

  • Kim BR, Nguyen TB, Min YK, Lee BT. In vitro and in vivo research of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds. Tissue Eng Half A. 2014;20(23–24):3279–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soleymani S, EilBakhtiari S, Karbasi EB. Toloue Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering functions: a evaluation. Int J Biol Macromol. 2021;166:986–98.

    Article 

    Google Scholar
     

  • Tufan Y, Öztatlı H, Garipcan B, Ercan B. Improvement of electrically conductive porous silk fibroin/carbon nanofiber scaffolds. Biomed Mater. 2021;16(2):025027.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang PT, Murdock Ok, Alexander GC, Salaam AD, Ng JI, Lim DJ, Dean D, Jun HW. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like buildings for tissue engineering. J Biomed Mater Res Half A. 2016;104(4):1017–29.

    Article 
    CAS 

    Google Scholar
     

  • Wu J, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Mater. 2016;1(1):56–64.

    Article 

    Google Scholar
     

  • Jing X, Mi HY, Wang XC, Peng XF, Turng LS. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically embellished with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. ACS Appl Mater Interfaces. 2015;7(12):6955–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai H, Huang C, Xiu H, Zhang Q, Deng H, Wang Ok, Chen F, Fu Q. Considerably bettering oxygen barrier properties of polylactide through setting up parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Biomacromol. 2014;15(4):1507–14.

    Article 
    CAS 

    Google Scholar
     

  • Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O. Purposeful relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci. 2020;21(9):3242.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JJ, El-Fiqi A, Kim HW. Synergetic cues of bioactive nanoparticles and nanofibrous construction in bone scaffolds to stimulate osteogenesis and angiogenesis. ACS Appl Mater Interf. 2017;9(3):2059–73.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Cao F, Wu B, Yang J, Xu W, Wang W, Wei X, Liu G, Zhao D. Immobilization of bioactive vascular endothelial progress issue onto Ca-deficient hydroxyapatite-coated Mg by covalent bonding utilizing polydopamine. J Orthopaedic Trans. 2021;30:82–92.

    Article 

    Google Scholar
     

  • Jia W, Lau GY, Huang W, Zhang C, Tomsia AP, Fu Q. Bioactive glass for big bone restore. Adv Healthcare Mater. 2015;4(18):2842–8.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Fan L, Yu Z, Dang X, Wang Ok. The impact of deferoxamine on angiogenesis and bone restore in steroid-induced osteonecrosis of rabbit femoral heads. Experim Biol Med. 2015;240(2):273–80.

    Article 
    CAS 

    Google Scholar
     

  • Yao T, van Nunen T, Rivero R, Powell C, Carrazzone R, Kessels L, Wieringa PA, Hafeez S, Wolfs T, Moroni L, Matson JB, Baker MB. Electrospun scaffolds functionalized with a hydrogen sulfide donor stimulate angiogenesis. ACS Appl Mater Interf. 2022;14(25):28628–38.

    Article 
    CAS 

    Google Scholar
     

  • Shao Z, Wang L, Liu S, Wang X. Tetramethylpyrazine protects neurons from oxygen-glucose deprivation-induced demise. Medical Sci Monitor Int Med J Experim Clin Res. 2017;23:5277–82.


    Google Scholar
     

  • Chen Y, Lu W, Yang Ok, Duan X, Li M, Chen X, Zhang J, Kuang M, Liu S, Wu X, Zou G, Liu C, Hong C, He W, Liao J, Hou C, Zhang Z, Zheng Q, Chen J, Zhang N, Tang H, Vanderpool RR, Desai AA, Rischard F, Black SM, Garcia JGN, Makino A, Yuan JX, Zhong N, Wang J. Tetramethylpyrazine: A promising drug for the therapy of pulmonary hypertension. Br J Pharmacol. 2020;177(12):2743–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Gao F, Teng F, Zhang C. Tetramethylpyrazine promotes the proliferation and migration of mind endothelial cells. Mol Med Rep. 2014;10(1):29–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y, Liu C, Chen W, Wang H, Wang C, Lin N. Tetramethylpyrazine enhances vascularization and prevents osteonecrosis in steroid-treated rats. Biomed Res Int. 2015;2015: 315850.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Hu J, Solar H. Mineralized nanofibrous scaffold promotes phenamil-induced osteoblastic differentiation whereas mitigating adipogenic differentiation. J Tissue Eng Regen Med. 2020;14(3):464–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Wu J, Rahman MSU, Li S, Wang J, Li S, Wu Y, Liu Y, Xu S. Twin drug-loaded PLGA fibrous scaffolds for efficient therapy of breast most cancers in situ. Biomater Adv. 2023;148: 213358.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Ma J, Liu J, Liu C, Ni S, Dai T, Wang Y, Weng Y, Zhao H, Zhou D, Zhao X. Immunomodulation of telmisartan-loaded PCL/PVP scaffolds on macrophages promotes endogenous bone regeneration. ACS Appl Mater Interf. 2022;14(14):15942–55.

    Article 
    CAS 

    Google Scholar
     

  • Maruyama M, Pan CC, Moeinzadeh S, Storaci HW, Guzman RA, Lui E, Ueno M, Utsunomiya T, Zhang N, Rhee C, Yao Z, Takagi M, Goodman SB, Yang YP. Impact of porosity of a functionally-graded scaffold for the therapy of corticosteroid-associated osteonecrosis of the femoral head in rabbits. J Orthopaed Trans. 2021;28:90–9.

    Article 

    Google Scholar
     

  • Kandasamy S, Narayanan V, Sumathi S. Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone restore functions. Int J Biol Macromol. 2020;145:1018–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russias J, Saiz E, Nalla RK, Gryn Ok, Ritchie RO, Tomsia AP. Fabrication and mechanical properties of PLA/HA composites: a examine of in vitro degradation, supplies science & engineering. C Bio Supramol Syst. 2006;26(8):1289–95.

    CAS 

    Google Scholar
     

  • Nie W, Gao Y, McCoul DJ, Gillispie GJ, Zhang Y, Liang L, He C. Fast mineralization of hierarchical poly(l-lactic acid)/poly(ε-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration. Int J Nanomed. 2019;14:3929–41.

    Article 
    CAS 

    Google Scholar
     

  • Rambhia KJ, Ma PX. Managed drug launch for tissue engineering. J Managed Launch Off J Managed Launch Soc. 2015;219:119–28.

    Article 
    CAS 

    Google Scholar
     

  • Dang HP, Shabab T, Shafiee A, Peiffer QC, Fox Ok, Tran N, Dargaville TR, Hutmacher DW, Tran PA. 3D printed twin macro-, microscale porous community as a tissue engineering scaffold with drug delivering operate. Biofabrication. 2019;11(3): 035014.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren H, Lian X, Niu B, Zhao L, Zhang Q, Huang D, Wei Y, Li Z, He Z, Qiu Z. The examine of mechanical and drug launch properties of the mineralized collagen/polylactic acid scaffold by tuning the crystalline construction of polylactic acid. J Biomater Sci Polym Ed. 2021;32(6):749–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang D, Li D, Wang T, Shen H, Zhao P, Liu B, You Y, Ma Y, Yang F, Wu D, Wang S. Isoniazid conjugated poly(lactide-co-glycolide): long-term managed drug launch and tissue regeneration for bone tuberculosis remedy. Biomaterials. 2015;52:417–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Li D, Pei P, Wang W, Chen B, Chu Z, Zha Z, Yang X, Wang J, Qian H. Rod-based urchin-like hole microspheres of Bi(2)S(3): Facile synthesis, photo-controlled drug launch for photoacoustic imaging and chemo-photothermal remedy of tumor ablation. Biomaterials. 2020;237: 119835.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemos TSA, de Souza JF, Fajardo AR. Magnetic microspheres primarily based on pectin coated by chitosan in the direction of sensible drug launch. Carbohyd Polym. 2021;265: 118013.

    Article 
    CAS 

    Google Scholar
     

  • Bi YG, Lin ZT, Deng ST. Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug supply and bone tissue engineering, supplies science & engineering. C, Supplies for organic appl. 2019;100:576–83.

    CAS 

    Google Scholar
     

  • He W, Reaume M, Hennenfent M, Lee BP, Rajachar R. Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater Sci. 2020;8(12):3248–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Tune X, Cui Y, Cheng Ok, Tian X, Dong M, Liu L. Silk fibroin H-fibroin/poly(ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug launch. J Colloid Interface Sci. 2021;593:142–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hivechi A, Bahrami SH, Siegel RA. Drug launch and biodegradability of electrospun cellulose nanocrystal strengthened polycaprolactone, supplies science & engineering. C Mater Biol Appl. 2019;94:929–37.

    CAS 

    Google Scholar
     

  • García-González CA, Sosnik A, Kalmár J, De Marco I, Erkey C, Concheiro A, Alvarez-Lorenzo C. Aerogels in drug supply: from design to utility. J Managed Launch Off J Managed Launch Soc. 2021;332:40–63.

    Article 

    Google Scholar
     

  • Tamjid E, Bohlouli M, Mohammadi S, Alipour H, Nikkhah M. Sustainable drug launch from extremely porous and architecturally engineered composite scaffolds ready by 3D printing. J Biomed Mater Res Half A. 2020;108(6):1426–38.

    Article 
    CAS 

    Google Scholar
     

  • Chen M, Le DQ, Hein S, Li P, Nygaard JV, Kassem M, Kjems J, Besenbacher F, Bünger C. Fabrication and characterization of a fast prototyped tissue engineering scaffold with embedded multicomponent matrix for managed drug launch. Int J Nanomed. 2012;7:4285–97.

    Article 
    CAS 

    Google Scholar
     

  • Iglesias-Echevarria M, Durante L, Johnson R, Rafuse M, Ding Y, Bonani W, Maniglio D, Tan W. Coaxial PCL/PEG-thiol-ene microfiber with tunable physico-chemical properties for regenerative scaffolds. Biomaterials science. 2019;7(9):3640–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin S, Gao J, Yang R, Yuan C, Wang R, Zou Q, Zuo Y, Zhu M, Li Y, Man Y, Li J. A baicalin-loaded coaxial nanofiber scaffold regulated irritation and osteoclast differentiation for vascularized bone regeneration. Bioactive Mater. 2022;8:559–72.

    Article 
    CAS 

    Google Scholar
     

  • Lin Y, Wan Y, Du X, Li J, Wei J, Li T, Li C, Liu Z, Zhou M, Zhong Z. TAT-modified serum albumin nanoparticles for sustained-release of tetramethylpyrazine and improved concentrating on to spinal wire harm. J Nanobiotechnol. 2021;19(1):28.

    Article 
    CAS 

    Google Scholar
     

  • Zeng J, Xiong S, Zhou J, Wei P, Guo Ok, Wang F, Ouyang M, Lengthy Z, Yao A, Li J, Xiong L, Wu D. Hole hydroxyapatite microspheres loaded with rhCXCL13 to recruit BMSC for osteogenesis and synergetic angiogenesis to advertise bone regeneration in bone defects. Int J Nanomed. 2023;18:3509–34.

    Article 
    CAS 

    Google Scholar
     

  • Wu T, Tan L, Cheng N, Yan Q, Zhang YF, Liu CJ, Shi B. PNIPAAM modified mesoporous hydroxyapatite for sustained osteogenic drug launch and selling cell attachment, supplies science & engineering C. Mater Biol Appl. 2016;62:888–96.

    CAS 

    Google Scholar
     

  • Zhi W, Wang X, Solar D, Chen T, Yuan B, Li X, Chen X, Wang J, Xie Z, Zhu X, Zhang Ok, Zhang X. Optimum regenerative restore of enormous segmental bone defect in a goat mannequin with osteoinductive calcium phosphate bioceramic implants. Bioactive Mater. 2022;11:240–53.

    Article 
    CAS 

    Google Scholar
     

  • Hu H, Zhang H, Bu Z, Liu Z, Lv F, Pan M, Huang X, Cheng L. Small extracellular vesicles launched from bioglass/hydrogel scaffold promote vascularized bone regeneration by transferring miR-23a-3p. Int J Nanomed. 2022;17:6201–20.

    Article 

    Google Scholar
     

  • Miao Y, Chen Y, Luo J, Liu X, Yang Q, Shi X, Wang Y. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for selling vascularized bone regeneration. Bioactive mater. 2023;21:97–109.

    Article 
    CAS 

    Google Scholar
     

  • Chen X, Gao CY, Chu XY, Zheng CY, Luan YY, He X, Yang Ok, Zhang DL. VEGF-loaded heparinised gelatine-hydroxyapatite-tricalcium phosphate scaffold accelerates bone regeneration through enhancing osteogenesis-angiogenesis coupling. Entrance Bioeng Biotechnol. 2022;10: 915181.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casarrubios L, Gómez-Cerezo N, Sánchez-Salcedo S, Feito MJ, Serrano MC, Saiz-Pardo M, Ortega L, de Pablo D, Díaz-Güemes I, Fernández-Tomé B, Enciso S, Sánchez-Margallo FM, Portolés MT, Arcos D, Vallet-Regí M. Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep. Acta Biomater. 2020;101:544–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De la Riva B, Sánchez E, Hernández A, Reyes R, Tamimi F, López-Cabarcos E, Delgado A, Evora C. Native managed launch of VEGF and PDGF from a mixed brushite-chitosan system enhances bone regeneration. J Managed Launch Off J Managed Launch Soc. 2010;143(1):45–52.

    Article 

    Google Scholar
     

  • Ren Ok, Wang Y, Solar T, Yue W, Zhang H. Electrospun PCL/gelatin composite nanofiber buildings for efficient guided bone regeneration membranes, supplies science & engineering. C, Mater Biol Appl. 2017;78:324–32.

    CAS 

    Google Scholar
     

  • Gong M, Chi C, Ye J, Liao M, Xie W, Wu C, Shi R, Zhang L. Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential synthetic periosteum, colloids and surfaces. B, Biointerf. 2018;170:201–9.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Hu B, Li H, Feng G, Pan S, Chen Z, Li B, Tune J. Biomimetic mineralized hydroxyapatite nanofiber-incorporated methacrylated gelatin hydrogel with improved mechanical and osteoinductive performances for bone regeneration. Int J Nanomed. 2022;17:1511–29.

    Article 
    CAS 

    Google Scholar
     

  • Hu Ok, Olsen BR. The roles of vascular endothelial progress consider bone restore and regeneration. Bone. 2016;91:30–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzpatrick V, Martín-Moldes Z, Deck A, Torres-Sanchez R, Valat A, Cairns D, Li C, Kaplan DL. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials. 2021;276: 120995.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin S, Zhang W, Zhang Z, Jiang X. Latest advances in scaffold design and materials for vascularized tissue-engineered bone regeneration. Adv Healthcare Mater. 2019;8(10): e1801433.

    Article 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here