Home Nanotechnology Antibacterial micro/nanomotors: advancing biofilm analysis to assist medical functions | Journal of Nanobiotechnology

Antibacterial micro/nanomotors: advancing biofilm analysis to assist medical functions | Journal of Nanobiotechnology

0
Antibacterial micro/nanomotors: advancing biofilm analysis to assist medical functions | Journal of Nanobiotechnology

[ad_1]

  • Bassetti M, Welte T, Wunderink RG. Therapy of Gram-negative pneumonia within the vital care setting: is the beta-lactam antibiotic spine damaged past restore? Crit Care. 2016;20:19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. World traits in rising infectious ailments. Nature. 2008;451:990–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasoo S, Barreto JN, Tosh PK. Rising points in gram-negative bacterial resistance: an replace for the training clinician. Mayo Clin Proc. 2015;90:395–403.

    Article 
    PubMed 

    Google Scholar
     

  • Du Toit A. Antimicrobials: breaking floor for brand new antibiotics. Nat Rev Microbiol. 2018;16:186.

    Article 
    PubMed 

    Google Scholar
     

  • Lalchhandama Okay. Historical past of penicillin. WikiJ Med. 2021;8:1.


    Google Scholar
     

  • York A. Bacterial evolution: historic influences on antibiotic resistance. Nat Rev Microbiol. 2017;15:576–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Worthington RJ, Melander C. Mixture approaches to fight multidrug-resistant micro organism. Developments Biotechnol. 2013;31:177–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation mixture therapies in opposition to multidrug-resistant micro organism. Theranostics. 2021;11:4910–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou J, Lengthy X, Wang X, Li L, Mao D, Luo Y, Ren H. World development of antimicrobial resistance in widespread bacterial pathogens in response to antibiotic consumption. J Hazard Mater. 2023;442: 130042.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grande R, Puca V, Muraro R. Antibiotic resistance and bacterial biofilm. Professional Opin Ther Pat. 2020;30:897–900.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies D. Understanding biofilm resistance to antibacterial brokers. Nat Rev Drug Discov. 2003;2:114–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gander S. Bacterial biofllms: resistance to antimicrobial brokers. J Anlimicrob Chemother. 1996;37:1047–50.

    Article 
    CAS 

    Google Scholar
     

  • Xing Z, Guo J, Wu Z, He C, Wang L, Bai M, Liu X, Zhu B, Guan Q, Cheng C. Nanomaterials-enabled physicochemical antibacterial therapeutics: towards the antibiotic-free disinfections. Small. 2023. https://doi.org/10.1002/smll.202303594.

    Article 
    PubMed 

    Google Scholar
     

  • Singh AV, Maharjan R-S, Kanase A, Siewert Okay, Rosenkranz D, Singh R, Laux P, Luch A. Machine-learning-based method to decode the affect of nanomaterial properties on their interplay with cells. ACS Appl Mater Interfaces. 2020;13:1943–55.

    Article 
    PubMed 

    Google Scholar
     

  • Jenkins J, Mantell J, Neal C, Gholinia A, Verkade P, Nobbs AH, Su B. Antibacterial results of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat Commun. 2020;11:1626.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Y, Betts H, Keller S, Cariou Okay, Gasser G. Latest developments of metal-based compounds in opposition to fungal pathogens. Chem Soc Rev. 2021;50:10346–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, Gao C, Wang D, He Q. Bubble-propelled Janus gallium/zinc micromotors for the lively remedy of bacterial infections. Angew Chem Int Ed Engl. 2021;60:8750–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geng Z, Cao Z, Liu J. Latest advances in focused antibacterial remedy basing on nanomaterials. Exploration (Beijing). 2023;3:20210117.

    Article 
    PubMed 

    Google Scholar
     

  • Tezel G, Timur SS, Kuralay F, Gürsoy RN, Ulubayram Okay, Öner L, Eroğlu H. Present standing of micro/nanomotors in drug supply. J Drug Goal. 2021;29:29–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teixeira MC, Carbone C, Sousa MC, Espina M, Garcia ML, Sanchez-Lopez E, Souto EB. Nanomedicines for the supply of antimicrobial peptides (AMPs). Nanomaterials (Basel). 2020;10:560.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weitao T, Grandinetti G, Guo P. Revolving ATPase motors as asymmetrical hexamers in translocating prolonged dsDNA through conformational adjustments and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. Exploration (Beijing). 2023;3:20210056.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui T, Wu S, Solar Y, Ren J, Qu X. Self-propelled lively photothermal nanoswimmer for deep-layered elimination of biofilm in vivo. Nano Lett. 2020;20:7350–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blaser MJ. Antibiotic use and its penalties for the traditional microbiome. Science. 2016;352:544–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scaccia N, Vaz-Moreira I, Manaia CM. The chance of transmitting antibiotic resistance by way of endophytic micro organism. Developments Plant Sci. 2021;26:1213–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valsamatzi Panagiotou A, Popova KB, Penchovsky R. Strategies for prevention and constraint of antimicrobial resistance: a evaluation. Environ Chem Lett. 2021;19:2005–12.

    Article 
    CAS 

    Google Scholar
     

  • Kolarikova M, Hosikova B, Dilenko H, Barton-Tomankova Okay, Valkova L, Bajgar R, Malina L, Kolarova H. Photodynamic remedy: Progressive approaches for antibacterial and anticancer therapies. Med Res Rev. 2023;43:717–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. Nanomaterials-based photothermal remedy and its potentials in antibacterial remedy. J Management Launch. 2020;328:251–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Peng F, Yan X, Mao C, Ma X, Wilson DA, He Q, Tu Y. Medical micro- and nanomotors within the physique. Acta Pharm Sin B. 2023;13:517–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venugopalan PL, Esteban-Fernandez de Avila B, Pal M, Ghosh A, Wang J. Incredible voyage of nanomotors into the cell. ACS Nano. 2020;14:9423–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng J, Zhang P, Liu Q, Ran P, Xie S, Wei J, Li X. Pyroelectric Janus nanomotors for synergistic electrodynamic-photothermal-antibiotic therapies of bacterial infections. Acta Biomater. 2023;162:20–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu J, Zhang Y, Lin S, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, et al. Methods for interfering with bacterial early stage biofilms. Entrance Microbiol. 2021;12: 675843.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roder HL, Sorensen SJ, Burmolle M. Learning bacterial multispecies biofilms: the place to begin? Developments Microbiol. 2016;24:503–13.

    Article 
    PubMed 

    Google Scholar
     

  • Razdan Okay, Garcia-Lara J, Sinha VR, Singh KK. Pharmaceutical methods for the remedy of bacterial biofilms in power wounds. Drug Discov Right now. 2022;27:2137–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes G, Webber MA. Novel approaches to the remedy of bacterial biofilm infections. Br J Pharmacol. 2017;174:2237–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv X, Wang L, Mei A, Xu Y, Ruan X, Wang W, Shao J, Yang D, Dong X. Latest nanotechnologies to beat the bacterial biofilm matrix limitations. Small. 2023;19:2206220.

    Article 
    CAS 

    Google Scholar
     

  • Qiu B, Xie L, Zeng J, Liu T, Yan M, Zhou S, Liang Q, Tang J, Liang Okay, Kong B. Interfacially super-assembled uneven and H2O2 delicate multilayer-sandwich magnetic mesoporous silica nanomotors for detecting and eradicating heavy steel ions. Adv Funct Mater. 2021;31:2010694.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Ye Z, Lin S, Wei L, Xiao L. Nanozyme-triggered cascade reactions from cup-shaped nanomotors promote lively mobile concentrating on. Analysis (Wash D C). 2022;2022:9831012.

    CAS 
    PubMed 

    Google Scholar
     

  • Hortelao AC, Carrascosa R, Murillo-Cremaes N, Patino T, Sanchez S. Concentrating on 3D bladder most cancers spheroids with urease-powered nanomotors. ACS Nano. 2019;13:429–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hortelao AC, Simó C, Guix M, Guallar-Garrido S, Julián E, Vilela D, Rejc L, Ramos-Cabrer P, Cossío U, Gómez-Vallejo V, et al. Swarming conduct and in vivo monitoring of enzymatic nanomotors throughout the bladder. Sci Robotic. 2021;6:eabd2823.

    Article 
    PubMed 

    Google Scholar
     

  • Gao C, Zhou C, Lin Z, Yang M, He Q. Floor wettability-directed propulsion of glucose-powered nanoflask motors. ACS Nano. 2019;13:12758–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang X, Ye H, Shi Okay, Wang Okay, Huang Y, Zhang X, Pan J. GOx-powered Janus platelet nanomotors for focused supply of thrombolytic medication in treating thrombotic ailments. ACS Biomater Sci Eng. 2023;9:4302–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng F, Tu Y, Males Y, van Hest JC, Wilson DA. Supramolecular adaptive nanomotors with magnetotaxis conduct. Adv Mater. 2017;29:1604996.

    Article 

    Google Scholar
     

  • Khoee S, Moayeri S, Charsooghi MA. Self-/magnetic-propelled catalytic nanomotors based mostly on a Janus SPION@PEG-Pt/PCL hybrid nanoarchitecture: single-particle versus collective motions. Langmuir. 2021;37:10668–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Chen W, Wang Z, Zhu Y, Zhao H, Wu Okay, Wu J, Zhang W, Zhang Q, Guo H, et al. NIR-II mild powered uneven hydrogel nanomotors for enhanced immunochemotherapy. Angew Chem Int Ed Engl. 2023;62: e202212866.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang W, Ma E, Tao P, Zhou X, Xing Y, Chen L, Zhang Y, Li J, Xu Okay, Wang H, Zheng S. Chemical-NIR dual-powered CuS/Pt nanomotors for tumor hypoxia modulation, deep tumor penetration and augmented synergistic phototherapy. J Mater Sci Technol. 2023;148:171–85.

    Article 

    Google Scholar
     

  • Wang J, Liu X, Qi Y, Liu Z, Cai Y, Dong R. Ultrasound-propelled nanomotors for enhancing antigens cross-presentation and mobile immunity. Chem Eng J. 2021;416: 129091.

    Article 
    CAS 

    Google Scholar
     

  • Hansen-Bruhn M, de Avila BE, Beltran-Gastelum M, Zhao J, Ramirez-Herrera DE, Angsantikul P, Vesterager Gothelf Okay, Zhang L, Wang J. Lively intracellular supply of a Cas9/sgRNA complicated utilizing ultrasound-propelled nanomotors. Angew Chem Int Ed Engl. 2018;57:2657–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziemyte M, Escudero A, Diez P, Ferrer MD, Murguia JR, Marti-Centelles V, Mira A, Martinez-Manez R. Ficin-cyclodextrin-based docking nanoarchitectonics of self-propelled nanomotors for bacterial biofilm eradication. Chem Mater. 2023;35:4412–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng J, Wang W, Gao X, Zhao S, Chen W, Li J, Liu YN. Cascade catalytically launched nitric oxide-driven nanomotor with enhanced penetration for antibiofilm. Small. 2022;18:2205252.

    Article 
    CAS 

    Google Scholar
     

  • Singh AV, Vyas V, Salve TS, Cortelli D, Dellasega D, Podestà A, Milani P, Gade WN. Biofilm formation on nanostructured titanium oxide surfaces and a micro/nanofabrication-based preventive technique utilizing colloidal lithography. Biofabrication. 2012;4: 025001.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Feng Y, An M, Sarwar MT, Yang H. Advances in finite aspect evaluation of exterior field-driven micro/nanorobots: a evaluation. Adv Intell Syst. 2023. https://doi.org/10.1002/aisy.202200466.

    Article 

    Google Scholar
     

  • Xu L, Mou F, Gong H, Luo M, Guan J. Gentle-driven micro/nanomotors: from fundamentals to functions. Chem Soc Rev. 2017;46:6905–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Aw J, Xing B. Nanostructures for NIR light-controlled therapies. Nanoscale. 2017;9:3698–718.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srivastava SK, Clergeaud G, Andresen TL, Boisen A. Micromotors for drug supply in vivo: the street forward. Adv Drug Deliv Rev. 2019;138:41–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maric T, Lovind A, Zhang Z, Geng J, Boisen A. Close to-infrared light-driven mesoporous SiO2/Au nanomotors for eradication of pseudomonas aeruginosa biofilm. Adv Healthc Mater. 2023;12:2203018.

    Article 
    CAS 

    Google Scholar
     

  • Gao C, Wang Y, Ye Z, Lin Z, Ma X, He Q. Biomedical micro-/nanomotors: from overcoming organic limitations to in vivo imaging. Adv Mater. 2021;33:2000512.

    Article 
    CAS 

    Google Scholar
     

  • de Avila BE, Angsantikul P, Li J, Angel Lopez-Ramirez M, Ramirez-Herrera DE, Thamphiwatana S, Chen C, Delezuk J, Samakapiruk R, Ramez V, et al. Micromotor-enabled lively drug supply for in vivo remedy of abdomen an infection. Nat Commun. 2017;8:272.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Track Z, Deng G, Jiang Okay, Wang H, Zhang X, Han H. Gastric acid powered nanomotors launch antibiotics for in vivo remedy of helicobacter pylori an infection. Small. 2021;17:2006877.

    Article 
    CAS 

    Google Scholar
     

  • Zheng Okay, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coord Chem Rev. 2018;357:1–17.

    Article 
    CAS 

    Google Scholar
     

  • Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Okay, Jiang Z, Jurado-Sanchez B, Escarpa A. Nano/micromotors for analysis and remedy of most cancers and infectious ailments. Chemistry. 2020;26:2309–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Ge H, Ding X, Lu X, Zhang Y, Gu Z. Cubic nano-silver-decorated manganese dioxide micromotors: enhanced propulsion and antibacterial efficiency. Nanoscale. 2020;12:19655–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torres MDT, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide design ideas for antimicrobial functions. J Mol Biol. 2019;431:3547–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Der Torossian TM, de la Fuente-Nunez C. Reprogramming organic peptides to fight infectious ailments. Chem Commun (Camb). 2019;55:15020–32.

    Article 

    Google Scholar
     

  • Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Kockritz-Blickwede M, de la Fuente-Nunez C, O’Neil DA, Angeles-Boza AM. Antimicrobial susceptibility testing of antimicrobial peptides to higher predict efficacy. Entrance Cell Infect Microbiol. 2020;10:326.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabatier JM. Antibacterial peptides. Antibiotics (Basel). 2020;9:142.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol. 2016;26:R14-19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arque X, Torres MDT, Patino T, Boaro A, Sanchez S, de la Fuente-Nunez C. Autonomous remedy of bacterial infections in vivo utilizing antimicrobial micro- and nanomotors. ACS Nano. 2022;16:7547–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu JW, Yao Okay, Xu ZK. Nanomaterials with a photothermal impact for antibacterial actions: an outline. Nanoscale. 2019;11:8680–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn Okay. The position of the sunshine supply in antimicrobial photodynamic remedy. Chem Soc Rev. 2023;52:1697–722.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh AV, Jahnke T, Wang S, Xiao Y, Alapan Y, Kharratian S, Onbasli MC, Kozielski Okay, David H, Richter G, et al. Anisotropic gold nanostructures: optimization through in silico modeling for hyperthermia. ACS Appl Nano Mater. 2018;1:6205–16.

    Article 
    CAS 

    Google Scholar
     

  • Reed NG. The historical past of ultraviolet germicidal irradiation for air disinfection. Pub Well being Rep. 2010;125:15–27.

    Article 

    Google Scholar
     

  • Hu X, Zhang H, Wang Y, Shiu B-C, Lin J-H, Zhang S, Lou C-W, Li T-T. Synergistic antibacterial technique based mostly on photodynamic remedy: progress and views. Chem Eng J. 2022;450: 138129.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Wen J, Zhang J, Guo D, Zhang Q. Emptiness-modulated of CuS for extremely antibacterial effectivity through photothermal/photodynamic synergetic remedy. Adv Healthc Mater. 2023;12:2201746.

    Article 
    CAS 

    Google Scholar
     

  • Guo J, Zhou J, Solar Z, Wang M, Zou X, Mao H, Yan F. Enhanced photocatalytic and antibacterial exercise of acridinium-grafted g-C(3)N(4) with broad-spectrum mild absorption for antimicrobial photocatalytic remedy. Acta Biomater. 2022;146:370–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang W-N, Pei P, Chu Z-Y, Chen B-J, Qian H-S, Zha Z-B, Zhou W, Liu T, Shao M, Wang H. Bi2S3 coated Au nanorods for enhanced photodynamic and photothermal antibacterial actions below NIR mild. Chem Eng J. 2020;397: 125488.

    Article 
    CAS 

    Google Scholar
     

  • Huo J, Jia Q, Huang H, Zhang J, Li P, Dong X, Huang W. Rising photothermal-derived multimodal synergistic remedy in combating bacterial infections. Chem Soc Rev. 2021;50:8762–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilela D, Stanton MM, Parmar J, Sanchez S. Microbots adorned with silver nanoparticles kill micro organism in aqueous media. ACS Appl Mater Interfaces. 2017;9:22093–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan Okay, Jurado-Sanchez B, Escarpa A. Twin-propelled lanbiotic based mostly Janus micromotors for selective inactivation of bacterial biofilms. Angew Chem Int Ed Engl. 2021;60:4915–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu D, Zhou C, Zhan C, Wang Y, You Y, Pan X, Jiao J, Zhang R, Dong Z, Wang W, Ma X. Enzymatic micromotors as a cellular photosensitizer platform for extremely environment friendly on-chip focused antibacteria photodynamic remedy. Adv Funct Mater. 2019;29: 807727.


    Google Scholar
     

  • Liu X, Liu H, Zhang J, Hao Y, Yang H, Zhao W, Mao C. Development of a matchstick-shaped Au@ZnO@SiO2-ICG Janus nanomotor for light-triggered synergistic antibacterial remedy. Biomater Sci. 2022;10:5608–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu S-L, Lee S-Okay. Ultraviolet radiation: DNA injury, restore, and human problems. Mol Cell Toxicol. 2017;13:21–8.

    Article 
    CAS 

    Google Scholar
     

  • Solar A, Guo H, Gan Q, Yang L, Liu Q, Xi L. Analysis of seen NIR-I and NIR-II mild penetration for photoacoustic imaging in rat organs. Choose Categorical. 2020;28:9002–13.

    Article 
    PubMed 

    Google Scholar
     

  • Chang B, Chen J, Bao J, Dong Okay, Chen S, Cheng Z. Design methods and functions of good optical probes within the second near-infrared window. Adv Drug Deliv Rev. 2023;192: 114637.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He X, Hou JT, Solar X, Jangili P, An J, Qian Y, Kim JS, Shen J. NIR-II photo-amplified sonodynamic remedy utilizing sodium molybdenum bronze nanoplatform in opposition to subcutaneous staphylococcus aureus an infection. Adv Funct Mater. 2022;32:2203964.

    Article 
    CAS 

    Google Scholar
     

  • Yang N, Guo H, Cao C, Wang X, Track X, Wang W, Yang D, Xi L, Mou X, Dong X. An infection microenvironment-activated nanoparticles for NIR-II photoacoustic imaging-guided photothermal/chemodynamic synergistic anti-infective remedy. Biomaterials. 2021;275: 120918.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen W, Hu T, Liu X, Zha J, Meng F, Wu Z, Cui Z, Yang Y, Li H, Zhang Q, et al. Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic most cancers remedy. Nat Commun. 2022;13:3384.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Li S, Yang Okay, Chen Z, Li Q, Zheng L, Wu Z, Zhang X, Su L, Wu Y, Track J. Drug-free antimicrobial nanomotor for exact remedy of multidrug-resistant bacterial infections. Nano Lett. 2023;23:3929–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Y, Tan L, Li Z, Liu X, Zheng Y, Feng X, Liang Y, Cui Z, Zhu S, Wu S. Single-atom catalysis for environment friendly sonodynamic remedy of methicillin-resistant staphylococcus aureus-infected osteomyelitis. ACS Nano. 2021;15:10628–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baiu I, Staudenmayer Okay. Necrotizing gentle tissue infections. JAMA. 2019;321:1738.

    Article 
    PubMed 

    Google Scholar
     

  • Walsh TR, Efthimiou J, Dréno B. Systematic evaluation of antibiotic resistance in zits: an growing topical and oral menace. Lancet Infect Dis. 2016;16:e23–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Li S, Dong H, Weng L, Yuwen L, Xie Y, Yang J, Shao J, Track X, Yang D, Wang L. Atmosphere-responsive therapeutic platforms for the remedy of implant an infection. Adv Healthc Mater. 2023;2300985.

  • Ahmadian E, Shahi S, Yazdani J, Maleki Dizaj S, Sharifi S. Native remedy of the dental caries utilizing nanomaterials. Biomed Pharmacother. 2018;108:443–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Wang L, Liu H, Pan Y, Li C, Xie Z, Jing X. Ionic covalent-organic framework nanozyme as efficient cascade catalyst in opposition to bacterial wound an infection. Small. 2021;17:2100756.

    Article 
    CAS 

    Google Scholar
     

  • Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms utilizing macromolecular brokers. Chem Soc Rev. 2021;50:1587–616.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ. Nanotechnology-based antimicrobials and supply techniques for biofilm-infection management. Chem Soc Rev. 2019;48:428–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antonoplis A, Zang X, Huttner MA, Chong KKL, Lee YB, Co JY, Amieva MR, Kline KA, Wender PA, Cegelski L. A dual-function antibiotic-transporter conjugate displays superior exercise in sterilizing MRSA biofilms and killing persister cells. J Am Chem Soc. 2018;140:16140–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie S, Huang Okay, Peng J, Liu Y, Cao W, Zhang D, Li X. Self-propelling nanomotors built-in with biofilm microenvironment-activated NO launch to speed up therapeutic of bacteria-infected diabetic wounds. Adv Healthc Mater. 2022;11:2201323.

    Article 
    CAS 

    Google Scholar
     

  • Su Y, Mainardi VL, Wang H, McCarthy A, Zhang YS, Chen S, John JV, Wong SL, Hollins RR, Wang G, Xie J. Dissolvable microneedles coupled with nanofiber dressings eradicate biofilms through successfully delivering a database-designed antimicrobial peptide. ACS Nano. 2020;14:11775–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Fang D, Zhang J, Xiao X, Li N, Li Y, Wan M, Mao C. Nanomotors-loaded microneedle patches for the remedy of bacterial biofilm-related infections of wound. J Colloid Interface Sci. 2023;647:142–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Ma L, Cheng C, Deng Y, Huang J, Fan X, Nie C, Zhao W, Zhao C. Nonchemotherapic and strong dual-responsive nanoagents with on-demand bacterial trapping, ablation, and launch for environment friendly wound disinfection. Adv Funct Mater. 2018;28:1705708.

    Article 

    Google Scholar
     

  • Maslova E, Eisaiankhongi L, Sjoberg F, McCarthy RR. Burns and biofilms: precedence pathogens and in vivo fashions. NPJ Biofilms Microbiomes. 2021;7:73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen S, Han F, Yuan A, Wu L, Cao J, Qian J, Qi X, Yan Y, Ge Y. Engineered nanoparticles disguised as macrophages for trapping lipopolysaccharide and stopping endotoxemia. Biomaterials. 2019;189:6068.

    Article 

    Google Scholar
     

  • Peng J, Xie S, Huang Okay, Ran P, Wei J, Zhang Z, Li X. Nitric oxide-propelled nanomotors for bacterial biofilm elimination and endotoxin elimination to deal with contaminated burn wounds. J Mater Chem B. 2022;10:4189–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang H, Liu Z, Li N, Shi B, Zou Y, Xie F, Ma Y, Li Z, Li H, Zheng Q, et al. Symbiotic cardiac pacemaker. Nat Commun. 2019;10:1821.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizvi SHA, Chang S-H. Results of composite intramedullary nail on cell phenotype-related actions and callus progress throughout the therapeutic of tibial bone fractures. Compos B Eng. 2022;228: 109429.

    Article 

    Google Scholar
     

  • Werner L. Intraocular lenses: overview of designs, supplies, and pathophysiologic options. Ophthalmology. 2021;128:e74–93.

    Article 
    PubMed 

    Google Scholar
     

  • Darouiche RO. Therapy of infections related to surgical implants. N Engl J Med. 2004;350:1422–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • VanEpps JS, Youthful JG. Implantable device-related an infection. Shock. 2016;46:597–608.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsen T, Jørgensen OD, Nielsen JC, Thøgersen AM, Philbert BT, Johansen JB. Incidence of device-related an infection in 97 750 sufferers: scientific knowledge from the entire Danish device-cohort (1982–2018). Eur Coronary heart J. 2019;40:1862–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ussia M, Urso M, Kment S, Fialova T, Klima Okay, Dolezelikova Okay, Pumera M. Gentle-propelled nanorobots for facial titanium implants biofilms elimination. Small. 2022;18:2200708.

    Article 
    CAS 

    Google Scholar
     

  • Wan M, Wang Q, Wang R, Wu R, Li T, Fang D, Huang Y, Yu Y, Fang L, Wang X, et al. Platelet-derived porous nanomotor for thrombus remedy. Sci Adv. 2020;6:eaaz9014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Z, Li T, Gao W, Xu T, Jurado-Sánchez B, Li J, Gao W, He Q, Zhang L, Wang J. Cell-membrane-coated artificial nanomotors for efficient biodetoxification. Adv Funct Mater. 2015;25:3881–7.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Angsantikul P, Liu W, Esteban-Fernández de Ávila B, Thamphiwatana S, Xu M, Sandraz E, Wang X, Delezuk J, Gao W, et al. Micromotors spontaneously neutralize gastric acid for pH-responsive payload launch. Angew Chem Int Ed. 2017;56:2156–61.

    Article 
    CAS 

    Google Scholar
     

  • Pijpers IAB, Cao S, Llopis-Lorente A, Zhu J, Track S, Joosten RRM, Meng F, Friedrich H, Williams DS, Sánchez S, et al. Hybrid biodegradable nanomotors by way of compartmentalized synthesis. Nano Lett. 2020;20:4472–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu L, Solar Y, Niu Y, Zhang P, Hu J, Chen Z, Zhang G, Xu Y. Microenvironment-adaptive nanozyme for accelerating drug-resistant bacteria-infected wound therapeutic. Adv Healthc Mater. 2023;12:2202596.

    Article 
    CAS 

    Google Scholar
     

  • Stabryla LM, Johnston KA, Diemler NA, Cooper VS, Millstone JE, Haig S-J, Gilbertson LM. Function of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat Nanotechnol. 2021;16:996–1003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joseph A, Contini C, Cecchin D, Nyberg S, Ruiz-Perez L, Gaitzsch J, Fullstone G, Tian X, Azizi J, Preston J, et al. Chemotactic artificial vesicles: design and functions in blood-brain barrier crossing. Sci Adv. 2017;3: e1700362.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makabenta JMV, Nabawy A, Li C-H, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2020;19:23–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu P, Li D, Kang M, Pan Y, Wen Z, Zhang Z, Wang D, Tang BZ. Rising functions of aggregation-induced emission luminogens in bacterial biofilm imaging and antibiofilm theranostics. Small Struct. 2023;4:2200329.

    Article 
    CAS 

    Google Scholar
     

  • Singh AV, Ansari MHD, Laux P, Luch A. Micro-nanorobots: vital issues when growing novel drug supply platforms. Professional Opin Drug Deliv. 2019;16:1259–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh AV, Ansari MHD, Rosenkranz D, Maharjan RS, Kriegel FL, Gandhi Okay, Kanase A, Singh R, Laux P, Luch A. Synthetic intelligence and machine studying in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthc Mater. 2020;9:1901862.

    Article 
    CAS 

    Google Scholar
     

  • Singh AV, Rosenkranz D, Ansari MHD, Singh R, Kanase A, Singh SP, Johnston B, Tentschert J, Laux P, Luch A. Synthetic intelligence and machine studying empower superior biomedical materials design to toxicity prediction. Adv Intell Syst. 2020;2:2000084.

    Article 

    Google Scholar
     

  • Vikram Singh A, Laux P, Luch A, Balkrishnan S, Prasad DS. Backside-UP meeting of nanorobots: extending artificial biology to complicated materials design. Entrance Nanosci Nanotech. 2019;5:1–2. https://doi.org/10.15761/FNN.1000S2005.

    Article 

    Google Scholar
     

  • Singh AV, Chandrasekar V, Janapareddy P, Mathews DE, Laux P, Luch A, Yang Y, Garcia-Canibano B, Balakrishnan S, Abinahed J, et al. Rising utility of nanorobotics and synthetic intelligence to cross the BBB: advances in design, managed maneuvering, and concentrating on of the limitations. ACS Chem Neurosci. 2021;12:1835–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh AV, Bansod G, Mahajan M, Dietrich P, Singh SP, Rav Okay, Thissen A, Bharde AM, Rothenstein D, Kulkarni S, Invoice J. Digital transformation in toxicology: enhancing communication and effectivity in danger evaluation. ACS Omega. 2023;8:21377–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmussen AJ, Ebbesen M, Andersen S. Nanoethics—a collaboration throughout disciplines. NanoEthics. 2012;6:185–93.

    Article 

    Google Scholar
     

  • Sreenivasalu PKP, Dora CP, Swami R, Jasthi VC, Shiroorkar PN, Nagaraja S, Asdaq SMB, Anwer MK. Nanomaterials in dentistry: present functions and future Scope. Nanomaterials. 2022;12:1676.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here