[ad_1]
Bassetti M, Welte T, Wunderink RG. Therapy of Gram-negative pneumonia within the vital care setting: is the beta-lactam antibiotic spine damaged past restore? Crit Care. 2016;20:19.
Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. World traits in rising infectious ailments. Nature. 2008;451:990–3.
Vasoo S, Barreto JN, Tosh PK. Rising points in gram-negative bacterial resistance: an replace for the training clinician. Mayo Clin Proc. 2015;90:395–403.
Du Toit A. Antimicrobials: breaking floor for brand new antibiotics. Nat Rev Microbiol. 2018;16:186.
Lalchhandama Okay. Historical past of penicillin. WikiJ Med. 2021;8:1.
York A. Bacterial evolution: historic influences on antibiotic resistance. Nat Rev Microbiol. 2017;15:576–7.
Worthington RJ, Melander C. Mixture approaches to fight multidrug-resistant micro organism. Developments Biotechnol. 2013;31:177–84.
Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation mixture therapies in opposition to multidrug-resistant micro organism. Theranostics. 2021;11:4910–28.
Hou J, Lengthy X, Wang X, Li L, Mao D, Luo Y, Ren H. World development of antimicrobial resistance in widespread bacterial pathogens in response to antibiotic consumption. J Hazard Mater. 2023;442: 130042.
Grande R, Puca V, Muraro R. Antibiotic resistance and bacterial biofilm. Professional Opin Ther Pat. 2020;30:897–900.
Davies D. Understanding biofilm resistance to antibacterial brokers. Nat Rev Drug Discov. 2003;2:114–22.
Gander S. Bacterial biofllms: resistance to antimicrobial brokers. J Anlimicrob Chemother. 1996;37:1047–50.
Xing Z, Guo J, Wu Z, He C, Wang L, Bai M, Liu X, Zhu B, Guan Q, Cheng C. Nanomaterials-enabled physicochemical antibacterial therapeutics: towards the antibiotic-free disinfections. Small. 2023. https://doi.org/10.1002/smll.202303594.
Singh AV, Maharjan R-S, Kanase A, Siewert Okay, Rosenkranz D, Singh R, Laux P, Luch A. Machine-learning-based method to decode the affect of nanomaterial properties on their interplay with cells. ACS Appl Mater Interfaces. 2020;13:1943–55.
Jenkins J, Mantell J, Neal C, Gholinia A, Verkade P, Nobbs AH, Su B. Antibacterial results of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat Commun. 2020;11:1626.
Lin Y, Betts H, Keller S, Cariou Okay, Gasser G. Latest developments of metal-based compounds in opposition to fungal pathogens. Chem Soc Rev. 2021;50:10346–402.
Lin Z, Gao C, Wang D, He Q. Bubble-propelled Janus gallium/zinc micromotors for the lively remedy of bacterial infections. Angew Chem Int Ed Engl. 2021;60:8750–4.
Geng Z, Cao Z, Liu J. Latest advances in focused antibacterial remedy basing on nanomaterials. Exploration (Beijing). 2023;3:20210117.
Tezel G, Timur SS, Kuralay F, Gürsoy RN, Ulubayram Okay, Öner L, Eroğlu H. Present standing of micro/nanomotors in drug supply. J Drug Goal. 2021;29:29–45.
Teixeira MC, Carbone C, Sousa MC, Espina M, Garcia ML, Sanchez-Lopez E, Souto EB. Nanomedicines for the supply of antimicrobial peptides (AMPs). Nanomaterials (Basel). 2020;10:560.
Weitao T, Grandinetti G, Guo P. Revolving ATPase motors as asymmetrical hexamers in translocating prolonged dsDNA through conformational adjustments and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. Exploration (Beijing). 2023;3:20210056.
Cui T, Wu S, Solar Y, Ren J, Qu X. Self-propelled lively photothermal nanoswimmer for deep-layered elimination of biofilm in vivo. Nano Lett. 2020;20:7350–8.
Blaser MJ. Antibiotic use and its penalties for the traditional microbiome. Science. 2016;352:544–5.
Scaccia N, Vaz-Moreira I, Manaia CM. The chance of transmitting antibiotic resistance by way of endophytic micro organism. Developments Plant Sci. 2021;26:1213–26.
Valsamatzi Panagiotou A, Popova KB, Penchovsky R. Strategies for prevention and constraint of antimicrobial resistance: a evaluation. Environ Chem Lett. 2021;19:2005–12.
Kolarikova M, Hosikova B, Dilenko H, Barton-Tomankova Okay, Valkova L, Bajgar R, Malina L, Kolarova H. Photodynamic remedy: Progressive approaches for antibacterial and anticancer therapies. Med Res Rev. 2023;43:717–74.
Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. Nanomaterials-based photothermal remedy and its potentials in antibacterial remedy. J Management Launch. 2020;328:251–62.
Li H, Peng F, Yan X, Mao C, Ma X, Wilson DA, He Q, Tu Y. Medical micro- and nanomotors within the physique. Acta Pharm Sin B. 2023;13:517–41.
Venugopalan PL, Esteban-Fernandez de Avila B, Pal M, Ghosh A, Wang J. Incredible voyage of nanomotors into the cell. ACS Nano. 2020;14:9423–39.
Meng J, Zhang P, Liu Q, Ran P, Xie S, Wei J, Li X. Pyroelectric Janus nanomotors for synergistic electrodynamic-photothermal-antibiotic therapies of bacterial infections. Acta Biomater. 2023;162:20–31.
Fu J, Zhang Y, Lin S, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, et al. Methods for interfering with bacterial early stage biofilms. Entrance Microbiol. 2021;12: 675843.
Roder HL, Sorensen SJ, Burmolle M. Learning bacterial multispecies biofilms: the place to begin? Developments Microbiol. 2016;24:503–13.
Razdan Okay, Garcia-Lara J, Sinha VR, Singh KK. Pharmaceutical methods for the remedy of bacterial biofilms in power wounds. Drug Discov Right now. 2022;27:2137–50.
Hughes G, Webber MA. Novel approaches to the remedy of bacterial biofilm infections. Br J Pharmacol. 2017;174:2237–46.
Lv X, Wang L, Mei A, Xu Y, Ruan X, Wang W, Shao J, Yang D, Dong X. Latest nanotechnologies to beat the bacterial biofilm matrix limitations. Small. 2023;19:2206220.
Qiu B, Xie L, Zeng J, Liu T, Yan M, Zhou S, Liang Q, Tang J, Liang Okay, Kong B. Interfacially super-assembled uneven and H2O2 delicate multilayer-sandwich magnetic mesoporous silica nanomotors for detecting and eradicating heavy steel ions. Adv Funct Mater. 2021;31:2010694.
Wang X, Ye Z, Lin S, Wei L, Xiao L. Nanozyme-triggered cascade reactions from cup-shaped nanomotors promote lively mobile concentrating on. Analysis (Wash D C). 2022;2022:9831012.
Hortelao AC, Carrascosa R, Murillo-Cremaes N, Patino T, Sanchez S. Concentrating on 3D bladder most cancers spheroids with urease-powered nanomotors. ACS Nano. 2019;13:429–39.
Hortelao AC, Simó C, Guix M, Guallar-Garrido S, Julián E, Vilela D, Rejc L, Ramos-Cabrer P, Cossío U, Gómez-Vallejo V, et al. Swarming conduct and in vivo monitoring of enzymatic nanomotors throughout the bladder. Sci Robotic. 2021;6:eabd2823.
Gao C, Zhou C, Lin Z, Yang M, He Q. Floor wettability-directed propulsion of glucose-powered nanoflask motors. ACS Nano. 2019;13:12758–66.
Fang X, Ye H, Shi Okay, Wang Okay, Huang Y, Zhang X, Pan J. GOx-powered Janus platelet nanomotors for focused supply of thrombolytic medication in treating thrombotic ailments. ACS Biomater Sci Eng. 2023;9:4302–10.
Peng F, Tu Y, Males Y, van Hest JC, Wilson DA. Supramolecular adaptive nanomotors with magnetotaxis conduct. Adv Mater. 2017;29:1604996.
Khoee S, Moayeri S, Charsooghi MA. Self-/magnetic-propelled catalytic nanomotors based mostly on a Janus SPION@PEG-Pt/PCL hybrid nanoarchitecture: single-particle versus collective motions. Langmuir. 2021;37:10668–82.
Wang Y, Chen W, Wang Z, Zhu Y, Zhao H, Wu Okay, Wu J, Zhang W, Zhang Q, Guo H, et al. NIR-II mild powered uneven hydrogel nanomotors for enhanced immunochemotherapy. Angew Chem Int Ed Engl. 2023;62: e202212866.
Wang W, Ma E, Tao P, Zhou X, Xing Y, Chen L, Zhang Y, Li J, Xu Okay, Wang H, Zheng S. Chemical-NIR dual-powered CuS/Pt nanomotors for tumor hypoxia modulation, deep tumor penetration and augmented synergistic phototherapy. J Mater Sci Technol. 2023;148:171–85.
Wang J, Liu X, Qi Y, Liu Z, Cai Y, Dong R. Ultrasound-propelled nanomotors for enhancing antigens cross-presentation and mobile immunity. Chem Eng J. 2021;416: 129091.
Hansen-Bruhn M, de Avila BE, Beltran-Gastelum M, Zhao J, Ramirez-Herrera DE, Angsantikul P, Vesterager Gothelf Okay, Zhang L, Wang J. Lively intracellular supply of a Cas9/sgRNA complicated utilizing ultrasound-propelled nanomotors. Angew Chem Int Ed Engl. 2018;57:2657–61.
Ziemyte M, Escudero A, Diez P, Ferrer MD, Murguia JR, Marti-Centelles V, Mira A, Martinez-Manez R. Ficin-cyclodextrin-based docking nanoarchitectonics of self-propelled nanomotors for bacterial biofilm eradication. Chem Mater. 2023;35:4412–26.
Zheng J, Wang W, Gao X, Zhao S, Chen W, Li J, Liu YN. Cascade catalytically launched nitric oxide-driven nanomotor with enhanced penetration for antibiofilm. Small. 2022;18:2205252.
Singh AV, Vyas V, Salve TS, Cortelli D, Dellasega D, Podestà A, Milani P, Gade WN. Biofilm formation on nanostructured titanium oxide surfaces and a micro/nanofabrication-based preventive technique utilizing colloidal lithography. Biofabrication. 2012;4: 025001.
Liu Y, Feng Y, An M, Sarwar MT, Yang H. Advances in finite aspect evaluation of exterior field-driven micro/nanorobots: a evaluation. Adv Intell Syst. 2023. https://doi.org/10.1002/aisy.202200466.
Xu L, Mou F, Gong H, Luo M, Guan J. Gentle-driven micro/nanomotors: from fundamentals to functions. Chem Soc Rev. 2017;46:6905–26.
Yang Y, Aw J, Xing B. Nanostructures for NIR light-controlled therapies. Nanoscale. 2017;9:3698–718.
Srivastava SK, Clergeaud G, Andresen TL, Boisen A. Micromotors for drug supply in vivo: the street forward. Adv Drug Deliv Rev. 2019;138:41–55.
Maric T, Lovind A, Zhang Z, Geng J, Boisen A. Close to-infrared light-driven mesoporous SiO2/Au nanomotors for eradication of pseudomonas aeruginosa biofilm. Adv Healthc Mater. 2023;12:2203018.
Gao C, Wang Y, Ye Z, Lin Z, Ma X, He Q. Biomedical micro-/nanomotors: from overcoming organic limitations to in vivo imaging. Adv Mater. 2021;33:2000512.
de Avila BE, Angsantikul P, Li J, Angel Lopez-Ramirez M, Ramirez-Herrera DE, Thamphiwatana S, Chen C, Delezuk J, Samakapiruk R, Ramez V, et al. Micromotor-enabled lively drug supply for in vivo remedy of abdomen an infection. Nat Commun. 2017;8:272.
Wu Y, Track Z, Deng G, Jiang Okay, Wang H, Zhang X, Han H. Gastric acid powered nanomotors launch antibiotics for in vivo remedy of helicobacter pylori an infection. Small. 2021;17:2006877.
Zheng Okay, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coord Chem Rev. 2018;357:1–17.
Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941–65.
Yuan Okay, Jiang Z, Jurado-Sanchez B, Escarpa A. Nano/micromotors for analysis and remedy of most cancers and infectious ailments. Chemistry. 2020;26:2309–26.
Liu W, Ge H, Ding X, Lu X, Zhang Y, Gu Z. Cubic nano-silver-decorated manganese dioxide micromotors: enhanced propulsion and antibacterial efficiency. Nanoscale. 2020;12:19655–64.
Torres MDT, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide design ideas for antimicrobial functions. J Mol Biol. 2019;431:3547–67.
Der Torossian TM, de la Fuente-Nunez C. Reprogramming organic peptides to fight infectious ailments. Chem Commun (Camb). 2019;55:15020–32.
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Kockritz-Blickwede M, de la Fuente-Nunez C, O’Neil DA, Angeles-Boza AM. Antimicrobial susceptibility testing of antimicrobial peptides to higher predict efficacy. Entrance Cell Infect Microbiol. 2020;10:326.
Sabatier JM. Antibacterial peptides. Antibiotics (Basel). 2020;9:142.
Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol. 2016;26:R14-19.
Arque X, Torres MDT, Patino T, Boaro A, Sanchez S, de la Fuente-Nunez C. Autonomous remedy of bacterial infections in vivo utilizing antimicrobial micro- and nanomotors. ACS Nano. 2022;16:7547–58.
Xu JW, Yao Okay, Xu ZK. Nanomaterials with a photothermal impact for antibacterial actions: an outline. Nanoscale. 2019;11:8680–91.
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn Okay. The position of the sunshine supply in antimicrobial photodynamic remedy. Chem Soc Rev. 2023;52:1697–722.
Singh AV, Jahnke T, Wang S, Xiao Y, Alapan Y, Kharratian S, Onbasli MC, Kozielski Okay, David H, Richter G, et al. Anisotropic gold nanostructures: optimization through in silico modeling for hyperthermia. ACS Appl Nano Mater. 2018;1:6205–16.
Reed NG. The historical past of ultraviolet germicidal irradiation for air disinfection. Pub Well being Rep. 2010;125:15–27.
Hu X, Zhang H, Wang Y, Shiu B-C, Lin J-H, Zhang S, Lou C-W, Li T-T. Synergistic antibacterial technique based mostly on photodynamic remedy: progress and views. Chem Eng J. 2022;450: 138129.
Zhang Z, Wen J, Zhang J, Guo D, Zhang Q. Emptiness-modulated of CuS for extremely antibacterial effectivity through photothermal/photodynamic synergetic remedy. Adv Healthc Mater. 2023;12:2201746.
Guo J, Zhou J, Solar Z, Wang M, Zou X, Mao H, Yan F. Enhanced photocatalytic and antibacterial exercise of acridinium-grafted g-C(3)N(4) with broad-spectrum mild absorption for antimicrobial photocatalytic remedy. Acta Biomater. 2022;146:370–84.
Wang W-N, Pei P, Chu Z-Y, Chen B-J, Qian H-S, Zha Z-B, Zhou W, Liu T, Shao M, Wang H. Bi2S3 coated Au nanorods for enhanced photodynamic and photothermal antibacterial actions below NIR mild. Chem Eng J. 2020;397: 125488.
Huo J, Jia Q, Huang H, Zhang J, Li P, Dong X, Huang W. Rising photothermal-derived multimodal synergistic remedy in combating bacterial infections. Chem Soc Rev. 2021;50:8762–89.
Vilela D, Stanton MM, Parmar J, Sanchez S. Microbots adorned with silver nanoparticles kill micro organism in aqueous media. ACS Appl Mater Interfaces. 2017;9:22093–100.
Yuan Okay, Jurado-Sanchez B, Escarpa A. Twin-propelled lanbiotic based mostly Janus micromotors for selective inactivation of bacterial biofilms. Angew Chem Int Ed Engl. 2021;60:4915–24.
Xu D, Zhou C, Zhan C, Wang Y, You Y, Pan X, Jiao J, Zhang R, Dong Z, Wang W, Ma X. Enzymatic micromotors as a cellular photosensitizer platform for extremely environment friendly on-chip focused antibacteria photodynamic remedy. Adv Funct Mater. 2019;29: 807727.
Liu X, Liu H, Zhang J, Hao Y, Yang H, Zhao W, Mao C. Development of a matchstick-shaped Au@ZnO@SiO2-ICG Janus nanomotor for light-triggered synergistic antibacterial remedy. Biomater Sci. 2022;10:5608–19.
Yu S-L, Lee S-Okay. Ultraviolet radiation: DNA injury, restore, and human problems. Mol Cell Toxicol. 2017;13:21–8.
Solar A, Guo H, Gan Q, Yang L, Liu Q, Xi L. Analysis of seen NIR-I and NIR-II mild penetration for photoacoustic imaging in rat organs. Choose Categorical. 2020;28:9002–13.
Chang B, Chen J, Bao J, Dong Okay, Chen S, Cheng Z. Design methods and functions of good optical probes within the second near-infrared window. Adv Drug Deliv Rev. 2023;192: 114637.
He X, Hou JT, Solar X, Jangili P, An J, Qian Y, Kim JS, Shen J. NIR-II photo-amplified sonodynamic remedy utilizing sodium molybdenum bronze nanoplatform in opposition to subcutaneous staphylococcus aureus an infection. Adv Funct Mater. 2022;32:2203964.
Yang N, Guo H, Cao C, Wang X, Track X, Wang W, Yang D, Xi L, Mou X, Dong X. An infection microenvironment-activated nanoparticles for NIR-II photoacoustic imaging-guided photothermal/chemodynamic synergistic anti-infective remedy. Biomaterials. 2021;275: 120918.
Shen W, Hu T, Liu X, Zha J, Meng F, Wu Z, Cui Z, Yang Y, Li H, Zhang Q, et al. Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic most cancers remedy. Nat Commun. 2022;13:3384.
Liu L, Li S, Yang Okay, Chen Z, Li Q, Zheng L, Wu Z, Zhang X, Su L, Wu Y, Track J. Drug-free antimicrobial nanomotor for exact remedy of multidrug-resistant bacterial infections. Nano Lett. 2023;23:3929–38.
Yu Y, Tan L, Li Z, Liu X, Zheng Y, Feng X, Liang Y, Cui Z, Zhu S, Wu S. Single-atom catalysis for environment friendly sonodynamic remedy of methicillin-resistant staphylococcus aureus-infected osteomyelitis. ACS Nano. 2021;15:10628–39.
Baiu I, Staudenmayer Okay. Necrotizing gentle tissue infections. JAMA. 2019;321:1738.
Walsh TR, Efthimiou J, Dréno B. Systematic evaluation of antibiotic resistance in zits: an growing topical and oral menace. Lancet Infect Dis. 2016;16:e23–33.
Hu Y, Li S, Dong H, Weng L, Yuwen L, Xie Y, Yang J, Shao J, Track X, Yang D, Wang L. Atmosphere-responsive therapeutic platforms for the remedy of implant an infection. Adv Healthc Mater. 2023;2300985.
Ahmadian E, Shahi S, Yazdani J, Maleki Dizaj S, Sharifi S. Native remedy of the dental caries utilizing nanomaterials. Biomed Pharmacother. 2018;108:443–7.
Li Y, Wang L, Liu H, Pan Y, Li C, Xie Z, Jing X. Ionic covalent-organic framework nanozyme as efficient cascade catalyst in opposition to bacterial wound an infection. Small. 2021;17:2100756.
Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms utilizing macromolecular brokers. Chem Soc Rev. 2021;50:1587–616.
Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ. Nanotechnology-based antimicrobials and supply techniques for biofilm-infection management. Chem Soc Rev. 2019;48:428–46.
Antonoplis A, Zang X, Huttner MA, Chong KKL, Lee YB, Co JY, Amieva MR, Kline KA, Wender PA, Cegelski L. A dual-function antibiotic-transporter conjugate displays superior exercise in sterilizing MRSA biofilms and killing persister cells. J Am Chem Soc. 2018;140:16140–51.
Xie S, Huang Okay, Peng J, Liu Y, Cao W, Zhang D, Li X. Self-propelling nanomotors built-in with biofilm microenvironment-activated NO launch to speed up therapeutic of bacteria-infected diabetic wounds. Adv Healthc Mater. 2022;11:2201323.
Su Y, Mainardi VL, Wang H, McCarthy A, Zhang YS, Chen S, John JV, Wong SL, Hollins RR, Wang G, Xie J. Dissolvable microneedles coupled with nanofiber dressings eradicate biofilms through successfully delivering a database-designed antimicrobial peptide. ACS Nano. 2020;14:11775–86.
Chen L, Fang D, Zhang J, Xiao X, Li N, Li Y, Wan M, Mao C. Nanomotors-loaded microneedle patches for the remedy of bacterial biofilm-related infections of wound. J Colloid Interface Sci. 2023;647:142–51.
Yang Y, Ma L, Cheng C, Deng Y, Huang J, Fan X, Nie C, Zhao W, Zhao C. Nonchemotherapic and strong dual-responsive nanoagents with on-demand bacterial trapping, ablation, and launch for environment friendly wound disinfection. Adv Funct Mater. 2018;28:1705708.
Maslova E, Eisaiankhongi L, Sjoberg F, McCarthy RR. Burns and biofilms: precedence pathogens and in vivo fashions. NPJ Biofilms Microbiomes. 2021;7:73.
Shen S, Han F, Yuan A, Wu L, Cao J, Qian J, Qi X, Yan Y, Ge Y. Engineered nanoparticles disguised as macrophages for trapping lipopolysaccharide and stopping endotoxemia. Biomaterials. 2019;189:6068.
Peng J, Xie S, Huang Okay, Ran P, Wei J, Zhang Z, Li X. Nitric oxide-propelled nanomotors for bacterial biofilm elimination and endotoxin elimination to deal with contaminated burn wounds. J Mater Chem B. 2022;10:4189–202.
Ouyang H, Liu Z, Li N, Shi B, Zou Y, Xie F, Ma Y, Li Z, Li H, Zheng Q, et al. Symbiotic cardiac pacemaker. Nat Commun. 2019;10:1821.
Rizvi SHA, Chang S-H. Results of composite intramedullary nail on cell phenotype-related actions and callus progress throughout the therapeutic of tibial bone fractures. Compos B Eng. 2022;228: 109429.
Werner L. Intraocular lenses: overview of designs, supplies, and pathophysiologic options. Ophthalmology. 2021;128:e74–93.
Darouiche RO. Therapy of infections related to surgical implants. N Engl J Med. 2004;350:1422–9.
VanEpps JS, Youthful JG. Implantable device-related an infection. Shock. 2016;46:597–608.
Olsen T, Jørgensen OD, Nielsen JC, Thøgersen AM, Philbert BT, Johansen JB. Incidence of device-related an infection in 97 750 sufferers: scientific knowledge from the entire Danish device-cohort (1982–2018). Eur Coronary heart J. 2019;40:1862–9.
Ussia M, Urso M, Kment S, Fialova T, Klima Okay, Dolezelikova Okay, Pumera M. Gentle-propelled nanorobots for facial titanium implants biofilms elimination. Small. 2022;18:2200708.
Wan M, Wang Q, Wang R, Wu R, Li T, Fang D, Huang Y, Yu Y, Fang L, Wang X, et al. Platelet-derived porous nanomotor for thrombus remedy. Sci Adv. 2020;6:eaaz9014.
Wu Z, Li T, Gao W, Xu T, Jurado-Sánchez B, Li J, Gao W, He Q, Zhang L, Wang J. Cell-membrane-coated artificial nanomotors for efficient biodetoxification. Adv Funct Mater. 2015;25:3881–7.
Li J, Angsantikul P, Liu W, Esteban-Fernández de Ávila B, Thamphiwatana S, Xu M, Sandraz E, Wang X, Delezuk J, Gao W, et al. Micromotors spontaneously neutralize gastric acid for pH-responsive payload launch. Angew Chem Int Ed. 2017;56:2156–61.
Pijpers IAB, Cao S, Llopis-Lorente A, Zhu J, Track S, Joosten RRM, Meng F, Friedrich H, Williams DS, Sánchez S, et al. Hybrid biodegradable nanomotors by way of compartmentalized synthesis. Nano Lett. 2020;20:4472–80.
Yu L, Solar Y, Niu Y, Zhang P, Hu J, Chen Z, Zhang G, Xu Y. Microenvironment-adaptive nanozyme for accelerating drug-resistant bacteria-infected wound therapeutic. Adv Healthc Mater. 2023;12:2202596.
Stabryla LM, Johnston KA, Diemler NA, Cooper VS, Millstone JE, Haig S-J, Gilbertson LM. Function of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat Nanotechnol. 2021;16:996–1003.
Joseph A, Contini C, Cecchin D, Nyberg S, Ruiz-Perez L, Gaitzsch J, Fullstone G, Tian X, Azizi J, Preston J, et al. Chemotactic artificial vesicles: design and functions in blood-brain barrier crossing. Sci Adv. 2017;3: e1700362.
Makabenta JMV, Nabawy A, Li C-H, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2020;19:23–36.
Liu P, Li D, Kang M, Pan Y, Wen Z, Zhang Z, Wang D, Tang BZ. Rising functions of aggregation-induced emission luminogens in bacterial biofilm imaging and antibiofilm theranostics. Small Struct. 2023;4:2200329.
Singh AV, Ansari MHD, Laux P, Luch A. Micro-nanorobots: vital issues when growing novel drug supply platforms. Professional Opin Drug Deliv. 2019;16:1259–75.
Singh AV, Ansari MHD, Rosenkranz D, Maharjan RS, Kriegel FL, Gandhi Okay, Kanase A, Singh R, Laux P, Luch A. Synthetic intelligence and machine studying in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthc Mater. 2020;9:1901862.
Singh AV, Rosenkranz D, Ansari MHD, Singh R, Kanase A, Singh SP, Johnston B, Tentschert J, Laux P, Luch A. Synthetic intelligence and machine studying empower superior biomedical materials design to toxicity prediction. Adv Intell Syst. 2020;2:2000084.
Vikram Singh A, Laux P, Luch A, Balkrishnan S, Prasad DS. Backside-UP meeting of nanorobots: extending artificial biology to complicated materials design. Entrance Nanosci Nanotech. 2019;5:1–2. https://doi.org/10.15761/FNN.1000S2005.
Singh AV, Chandrasekar V, Janapareddy P, Mathews DE, Laux P, Luch A, Yang Y, Garcia-Canibano B, Balakrishnan S, Abinahed J, et al. Rising utility of nanorobotics and synthetic intelligence to cross the BBB: advances in design, managed maneuvering, and concentrating on of the limitations. ACS Chem Neurosci. 2021;12:1835–53.
Singh AV, Bansod G, Mahajan M, Dietrich P, Singh SP, Rav Okay, Thissen A, Bharde AM, Rothenstein D, Kulkarni S, Invoice J. Digital transformation in toxicology: enhancing communication and effectivity in danger evaluation. ACS Omega. 2023;8:21377–90.
Rasmussen AJ, Ebbesen M, Andersen S. Nanoethics—a collaboration throughout disciplines. NanoEthics. 2012;6:185–93.
Sreenivasalu PKP, Dora CP, Swami R, Jasthi VC, Shiroorkar PN, Nagaraja S, Asdaq SMB, Anwer MK. Nanomaterials in dentistry: present functions and future Scope. Nanomaterials. 2022;12:1676.
[ad_2]